PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2023.6.1122eng

UDC: 636.085.12:636.087.72

Acknowledgements:
Supported financially by the Russian Science Foundation (project No. 22-26-00254)

 

BACTERIAL LUMINESCENCE OF MANGANESE- AND COBALT-CONTAINING ULTRAFINE PARTICLES (Mn2O3 and Co3O4) IN THE RUMEN FLUID

D.E. Shoshin1, 2 , E.A. Sizova1, 2, A.M. Kamirova1

1Federal Research Centre of Biological Systems and Agrotechnologies RAS, 29, ul. 9 Yanvarya, Orenburg, 460000,
e-mail daniilshoshin@mail.ru (✉ corresponding author), sizova.l78@yandex.ru, ayna.makaeva@mail.ru;
2Orenburg State University, 13, prosp. Pobedy, Orenburg, 460018 Russia

ORCID:
Shoshin D.E. orcid.org/0000-0003-3086-681X
Kamirova A.M. orcid.org/0000-0003-1474-8223
Sizova E.A. orcid.org/0000-0002-5125-5981

Final revision received June 05, 2023
Accepted July 12, 2023

Along with the main nutrients, proteins, fats and carbohydrates, mineral elements are important in feeding farm animals, including cattle and poultry (D.V. Mashnin et al., 2022; T.M. Okolelova et al., 2018). Their inorganic or organic forms are components of premixes (M.Y. Mishanin et al., 2021; O.S. Koschaeva 2018). However, nanocompositions are more promising, the properties of which can be modeled by changing the shape, synthesis paths and size of ultrafine particles (UFP) (S. Miroshnikov et al., 2019). However, the use of UFPs has a number of limitations related to their potential toxicity (E. Rusakova et al., 2015). It is also known that the symbiotic microflora forms a multicomponent suspension of organic substances, intermediate and final metabolites of the microbiome, capable of interacting with UFP (B.S. Nurzhanov et al., 2019). In this work, the dynamics of luminescence of a bacterial test object was established for the first time when a complex of UFPs and rumen fluid was introduced into the nutrient medium. This combination has been shown to neutralize the toxicity of nano-structures. The purpose of our work was to evaluate the properties of ultrafine particles using the example of various concentrations of manganese and cobalt oxide in the biochemical environment of the ruminal community based on the method of inhibition of bacterial luminescence. The study was conducted on the basis of the center Nanotechnology in Agriculture of the FRC BST RAS (Orenburg) in 2022. Chemically pure manganese oxides Mn2O3 and cobalt Co3O4 (99 %) for analysis in the amount of 157.8 and 240.7 mg were dispersed by ultrasound at a frequency of 35 kHz in 1 ml of distilled water for 30 minutes at 25 ºC. The rumen fluid (RF) was collected through a chronic rumen fistula (d = 80 mm, ANKOM Technology Corporation, USA) 3 hours after feeding in a Kazakh white-headed bull, whose main diet was 30 % concentrates and 70 % coarse feed without the addition of UFP. The luminescent bacterial test Ecolum (a lyophilized culture of Escherichia coli microorganisms carrying a hybrid plasmid pUC19 with luxCDABE cloned P. leiognathi 54D10 genes, SIS IMMUNOTECH, Russia) was used. In a bioluminescent plan, a series of double dilutions of the UFP and RF suspension was prepared starting from 50 ml Mn2O3 (1 mol/l) + 50 ml RF; 50 ml Co3O4 (1 mol/l) + 50 ml RF; 50 ml Mn2O3 (1 mol/l) + 50 ml distilled water; 50 ml Co3O4 (1 mol/l) + 50 ml distilled water; 100 ml RF; 100 ml distilled water (control). Then 100 ml of the Ecolume test system were added to each cell to a total concentrations of UFPs from 0.25 to 0.00025 mol/l and dilution of RF from 1_2 to 1:2048 in a pure test and from 1:4 to 1:4096 in the test with UFPs. The toxicity of the studied samples was determined on a multifunctional micro-lancet reader TECAN Infinite F200 (Tecan Austria GmbH, Austria), fixing the luminescence value of the bacterial strain E. coli K12 TG1 at different concentrations of ultrafine particles and rumen fluid for 3 hours with a period of 5 minutes. Based on the obtained data, graphs reflecting the dynamics of bioluminescence inhibition were constructed and the toxicity index (T) and the relative value of bioluminescence (A) was calculated. It was found that UFPs in their pure form cause dose-dependent inhibition of bacterial luminescence, suppressing over 50 % of the luminescence (EC50) even when diluted by 2048 times (0.00025 mol/l). The values of the toxicity index, when calculating which the control is taken as 100 %, clearly indicate a decrease in the toxic properties of suspensions with a decrease in the proportion of UFPs in them. For Mn2O3, this value ranged from 89.76 % at a concentration of 0.25 mol/l to 38.57 % at 0.00025 mol/l at the 1st minute of the exposure and from 95.16 to 52.85 % at the end of the 3rd hour; for Co3O4 — 99.44 and 32.80 %, respectively, at the 1st minute, and 99.43 and 54.72 % at the end of the 3rd hour. Similar indicators in the experiment with rumen fluid appeared only in the first minutes of exposure, after which the luminosity increased significantly, reaching 769.10 % to the control at 64-fold dilution. When combining rumen fluid with UFPs, a regression of the toxic properties of the latter was observed, although the maximum luminosity in combination with Mn2O3 was only 43.28 % of those for native RF, in combination with Co3O4 36.44 %. The observed changes in luminescence were divided into three types. The first type is control (luminescence changes in proportion to the growth phases of the bacterial culture; without additives). The second type corresponds to deep changes (suppression of luminescence throughout the entire exposure period; with the addition of UFPs), and the third type is competitive (increase in luminescence from the beginning to the end of the experiment; with the addition of RF or a complex of RF+UFP). Thus, the combination of rumen fluid with metal oxide particles leads to an inhibition of their toxicity to the test object.

Keywords: ultrafine particles, bacterial cells, bioluminescence, manganese oxide, cobalt oxide, rumen fluid.

 

REFERENCES

  1. Mashnin D.V., Pilipchuk V.K., Avdeyuk K.S., Krasnogolovyy V.S. Sbornik statey IV Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Nauka i sovremennoe obrazovanie: aktual’nye voprosy, dostizheniya i innovatsii» [Proc. IV Int. Conf. «Science and modern education: current issues, achievements and innovations»]. Penza, 2022: 64-66 (in Russ.).
  2. Okolelova T.M., Sharipov R.I., Sharipov T.R. Bolezni, voznikayushchie pri nepravil’nom kormlenii i soderzhanii ptitsy [Diseases that occur due to improper feeding and keeping of poultry]. Almaty, 2018 (in Russ.).
  3. Zubkova A.S., Davydova M.N., Moshkina S.V. Materialy 70-y Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Vklad universitetskoy agrarnoy nauki v innovatsionnoe razvitie agropromyshlennogo kompleksa» [Proc. 70 Int. Conf. «The contribution of university agricultural science to the innovative development of the agro-industrial complex»]. Ryazan’, 2019: 60-63 (in Russ.).
  4. Glushchenko N.N., Bogoslovskaya O.A., Baytukalov T.A., Ol’khovskaya I.P. Mikroelementy v meditsine, 2008, 1-2: 52 (in Russ.).
  5. Ryazantseva K.V., Nechitaylo K.S., Sizova E.A. Zhivotnovodstvo i kormoproizvodstvo, 2021, 1: 119-137 CrossRef (in Russ.).
  6. Lyutykh O. Effektivnoe zhivotnovodstvo, 2020, 4(161): 95-99 (in Russ.).
  7. Mishanin M.Yu., Mishanin Yu.F., Khvorostova T.V., Mishanin A.Yu. Materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Sovershenstvovanie tekhnologii konservirovaniya syr’ya rastitel’nogo i zhivotnogo proiskhozhdeniya» [Proc. Int. Conf. «Improving the technology for canning plant and animal raw materials »]. Krasnodar, 2021: 192-196 (in Russ.).
  8. Koshchaeva O.S. Materialy I Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Prioritetnye vektory razvitiya promyshlennosti i sel’skogo khozyaystva» [Proc. I Int. Conf. «Priority vectors for the development of industry and agriculture»]. Makeevka, 2018: 100-105 (in Russ.).
  9. Frolov A.N., Filippova O.B. Vestnik Tambovskogo universiteta. Seriya: Estestvennye i tekhnicheskie nauki, 2009, 1: 151-153 (in Russ.).
  10. Gangadoo S., Stanley D., Hughes R.J., Moore R.J., Chapman J. Nanoparticles in feed: Progress and prospects in poultry research. Trends in Food Science & Technology, 2016, 58: 115-126 CrossRef
  11. Kozinets A., Kozinets T., Azizbekyan S. Zhivotnovodstvo Rossii, 2020, 3: 35-38 CrossRef (in Russ.).
  12. Miroshnikov S., Sizova E., Yausheva E., Uimin M., Konev A., Minin A., Yermakov A., Nikiyan H. Comparative toxicity of CuZn nanoparticles with different physical and chemical characteristics. Oriental journal of Chemistry, 2019, 3: 973 CrossRef
  13. Boltianska N.I., Manita I., Podashevskaya N.Application of nanotechnology in technological processes of animal husbandry in Ukraine. Engineering of Nature Management, 2020, 2(16): 33-37 CrossRef
  14. Kumar I., Bhattacharya J. Assessment of the role of silver nanoparticles in reducing poultry mortality, risk and economic benefits. Applied Nanoscience, 2019, 9: 1293-1307 CrossRef
  15. Rusakova E., Kosyan D., Sizova E., Miroshnikov S., Sipaylova O. Comparative evaluation of acute toxicity of nanoparticles of zinc, copper and their nanosystems using Stylonychia mytilus. Oriental Journal of Chemistry, 2015, 31(4): 105 CrossRef
  16. Kumar V., Kumari A., Guleria P., Yadav S.K. Evaluating the toxicity of selected types of nanochemicals. In: Reviews of environmental contamination and toxicology, Vol. 215. D. Whitacre (ed.). Springer, New York, NY, 2012: 39-121 CrossRef
  17. Turan N.B., Erkan H.S., Engin G.O., Bilgili M.S. Nanoparticles in the aquatic environment: Usage, properties, transformation and toxicity — a review. Process Safety and Environmental Protection, 2019, 130: 238-249 CrossRef
  18. Liang J., Fang W., Wang Q., Zubair M., Zhang G., Ma W., Zhang P. Metagenomic analysis of community, enzymes and metabolic pathways during corn straw fermentation with rumen microorganisms for volatile fatty acid production. Bioresource Technology, 2021, 342: 126004 CrossRef
  19. Nurzhanov B.S., Levakhin Yu.I., Rysaev A.F. V sbornike: Fundamental’nye osnovy tekhnologicheskogo razvitiya sel’skogo khozyaystva: materialy rossiyskoy nauchno-prakticheskoy konferentsii s mezhdunarodnym uchastiem [In: proceedings of the conference “Fundamental principles of agriculture technological development”]. Orenburg, 2019: 277-280 (in Russ.).
  20. Aleshina E.S. Karimov I.F., Deryabin D.G. Metody biolyuminestsentnogo testirovaniya: Metodicheskie ukazaniya k laboratornomu praktikumu [Methods of bioluminescent testing: Guidelines]. Orenburg, 2011 (in Russ.).
  21. Hawco N.J., McIlvin M.M., Bundy R.M., Tagliabue A., Goepfert T.J., Moran D.M., Valentin-Alvarado L., DiTulliog G.R., Saito M.A. Minimal cobalt metabolism in the marine cyanobacterium Prochlorococcus. Proceedings of the National Academy of Sciences, 2020, 117(27): 15740-15747 CrossRef
  22. Bosma E.F., Rau M.H., van Gijtenbeek L.A., Siedler S. Regulation and distinct physiological roles of manganese in bacteria. FEMS Microbiology Reviews, 45(6): fuab028 CrossRef
  23. Roychoudhury A., Chakraborty S. Cobalt and molybdenum: deficiency, toxicity, and nutritional role in plant growth and development. In: Plant nutrition and food security in the era of climate change. V. Kumar, A.K. Srivastava, P. Suprasanna (eds.). Academic Press, 2022: 255-270 CrossRef
  24. Hu X., Wei X., Ling J., Chen J. Cobalt: an essential micronutrient for plant growth. Frontiers in Plant Science, 2021, 12: 768523 CrossRef
  25. Alejandro S., Höller S., Meier B., Peiter E. Manganese in plants: from acquisition to subcellular allocation. Frontiers in Plant Science, 2020, 11: 300 CrossRef
  26. Bonhomme A., Durand M., Quintana C., Halpern S. Influence du cobalt et de la vitamine B12 sur la croissance et la survie des ciliés du rumen in vitro, en fonction de la population bactérienne. Reproduction Nutrition Développement, 1982, 22(1A): 107-122 CrossRef
  27. Hai Y., Dugery R.J., Healy D., Christianson D.W. Formiminoglutamase from Trypanosoma cruzi is an arginase-like manganese metalloenzyme. Biochemistry, 2013, 52(51): 9294-9309 CrossRef
  28. Li A.-H., Na B.-K., Song K.-J., Lim S.-B., Chong C.-K., Park Y.-K., Kim T.-S. Identification and characterization of a mitochondrial manganese superoxide dismutase of Spirometra erinacei. Journal of Parasitology, 2011, 97(6): 1106-1112 CrossRef
  29. Nechev J., Stefanov K., Popov S. Effect of cobalt ions on lipid and sterol metabolism in the marine invertebrates Mytilus galloprovincialis and Actinia equine. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2006, 144(1): 112-118 CrossRef
  30. Tajchman K., Ukalska-Jaruga A., Bogdaszewski M., Pecio M., Janiszewski P. Comparison of the accumulation of macro- and microelements in the bone marrow and bone of wild and farmed red deer (Cervus elaphus). BMC Veterinary Research, 2021, 17(1): 1-11 CrossRef
  31. Liu Y., Zhang J., Wang C., Liu Q., Guo G., Huo W., Chen L., Zhang Y., C. Pei C., Zhang S. Effects of folic acid and cobalt sulphate supplementation on growth performance, nutrient digestion, rumen fermentation and blood metabolites in Holstein calves. British Journal of Nutrition, 2022, 127(9): 1313-1319 CrossRef
  32. Archibald F.S., Fridovich I. The scavenging of superoxide radical by manganous complexes: in vitro. Archives of Biochemistry and Biophysics, 1982, 214(2): 452-463 CrossRef
  33. Barnese K., Gralla E.B., Valentine J.S., Cabelli D.E. Biologically relevant mechanism for catalytic superoxide removal by simple manganese compounds. Proceedings of the National Academy of Sciences, 2012, 109(18): 6892-6897 CrossRef
  34. Anjem A., Imlay J.A. Mononuclear iron enzymes are primary targets of hydrogen peroxide stress. Journal of Biological Chemistry, 2012, 287(19): 15544-15556 CrossRef
  35. Sobota J.M., Imlay J.A. Iron enzyme ribulose-5-phosphate 3-epimerase in Escherichia coli is rapidly damaged by hydrogen peroxide but can be protected by manganese. Proceedings of the National Academy of Sciences, 2011, 108(13): 5402-5407 CrossRef
  36. Zeinert R., Martinez E., Schmitz J., Senn K., Usman B., Anantharaman V., Aravind L., Waters L.S. Structure—function analysis of manganese exporter proteins across bacteria. Journal of Biological Chemistry, 2018, 293(15): 5715-5730 CrossRef
  37. Waters L.S. Bacterial manganese sensing and homeostasis. Current Opinion in Chemical Biology, 2020, 55: 96-102 CrossRef
  38. Smith A.D., Warren M.J., Refsum H. Vitamin B12. Advances in Food and Nutrition Research, 2018, 83: 215-279 CrossRef
  39. Erikson K.M., Aschner M. 10. Manganese: its role in disease and health. In: Essential metals in medicine: therapeutic use and toxicity of metal ions in the clinic. P.L. Carver (ed.). De Gruyter, Berlin, Boston, 2019: 253-266 CrossRef
  40. Balachandran R.C., Mukhopadhyay S., McBride D., Veevers J., Harrison F.E., Aschner M., Haynes E.N., Bowman A.B. Brain manganese and the balance between essential roles and neurotoxicity. Journal of Biological Chemistry, 2020, 295(19): 6312-6329 CrossRef
  41. Martins Jr. A.C., Gubert P., Villas Boas G.R., Meirelles Paes M., Santamaría A., Lee E., Tinkov A.A., Bowman A.B., Aschner M. Manganese-induced neurodegenerative diseases and possible therapeutic approaches. Expert Review of Neurotherapeutics, 2020, 20(11): 1109-1121 CrossRef
  42. Warren M.J., Raux E., Schubert H.L., Escalante-Semerena J.C. The biosynthesis of adenosylcobalamin (vitamin B12). Natural Product Reports, 2002, 19(4): 390-412 CrossRef
  43. Osman D., Cooke A., Young T.R., Deery E., Robinson N.J., Warren M.J. The requirement for cobalt in vitamin B12: a paradigm for protein metalation. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2021, 1868(1), 118896 CrossRef
  44. Tjong E., Dimri M., Mohiuddin S.S. Biochemistry, Tetrahydrofolate. StatPearls Publishing, 2021.
  45. Budinger D., Barral S., Soo A.K., Kurian M.A. The role of manganese dysregulation in neurological disease: emerging evidence. The Lancet Neurology, 2021, 20(11): 956-968 CrossRef
  46. Lison D., Van Den Brûle S., Van Maele-Fabry G. Cobalt and its compounds: update on genotoxic and carcinogenic activities. Critical Reviews in Toxicology, 2018, 48(7): 522-539 CrossRef
  47. Mauter M.S., Zucker I., Perreault F., Werber J.R., Kim J.H., Elimelech M. The role of nanotechnology in tackling global water challenges. Nature Sustainability, 2018, 1(4): 166-175 CrossRef
  48. Ameen F., Alsamhary K., Alabdullatif J.A., ALNadhari S. A review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi. Ecotoxicology and Environmental Safety, 2021, 213: 112027 CrossRef
  49. Danzeisen R., Weight D., Blakeney M., Boyle D. A tiered approach to investigate the inhalation toxicity of cobalt substances. Introduction: Cobalt's essential role in nature and technology. Regulatory Toxicology and Pharmacology, 2022, 130: 105125 CrossRef
  50. Leyssens L., Vinck B., Van Der Straeten C., Wuyts F., Maes L. Cobalt toxicity in humans — a review of the potential sources and systemic health effects. Toxicology, 2017, 387: 43-56 CrossRef
  51. Yang S., Ling G., Li Q., Yi K., Tang X., Zhang M., Li X. Manganese toxicity-induced chlorosis in sugarcane seedlings involves inhibition of chlorophyll biosynthesis. The Crop Journal, 2022, 10(6): 1674-1682 CrossRef
  52. Noor I., Sohail H., Hasanuzzaman M., Hussain S., Li G., Liu J. Phosphorus confers tolerance against manganese toxicity in Prunus persica by reducing oxidative stress and improving chloroplast ultrastructure. Chemosphere, 2022, 291(part 3): 132999 CrossRef
  53. Tang T., Tao F., Li W. Characterisation of manganese toxicity tolerance in Arabis paniculata. Plant Diversity, 2021, 43(2): 163-172 CrossRef
  54. Ali Z., Yousafzai A.M., Sher N., Muhammad I., Nayab G.E., Aqeel S.A.M., Shah S.T., Aschner M., Khan I., Khan H. Toxicity and bioaccumulation of manganese and chromium in different organs of common carp (Cyprinus carpio) fish. Toxicology Reports, 2021, 8: 343-348 CrossRef
  55. Tavakoli P., Ghaffarifar F., Delavari H., Shahpari N. Efficacy of manganese oxide (Mn2O3) nanoparticles against Leishmania major in vitro and in vivo. Journal of Trace Elements in Medicine and Biology, 2019, 56: 162-168 CrossRef
  56. Rana S., Kumar A. Toxicity of nanoparticles to algae-bacterial co-culture: knowns and unknowns. Algal Research, 2022, 62: 102641 CrossRef
  57. Drozdova E.A., Karimov I.F. Vestnik Orenburgskogo gosudarstvennogo universiteta, 2014, 6(167): 104-107 (in Russ.).
  58. Liu Y.-J. Understanding the complete bioluminescence cycle from a multiscale computational perspective: a review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 52: 100537 CrossRef
  59. Dasari T.P., Pathakoti K., Hwang H.M. Determination of the mechanism of photoinduced toxicity of selected metal oxide nanoparticles (ZnO, CuO, Co3O4 and TiO2) to E. coli bacteria. Journal of Environmental Sciences, 2013, 25(5): 882-888 CrossRef
  60. Weimer P.J. Redundancy, resilience, and host specificity of the ruminal microbiota: implications for engineering improved ruminal fermentations. Frontiers in Microbiology, 2015, 6: 296 CrossRef
  61. Henderson G., Cox F., Ganesh S., Jonker A., Young W., Global Rumen Census Collaborators, Janssen P.H. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Scientific Reports, 2015, 5(1): 14567 CrossRef
  62. Lan W., Yang C. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. Science of the Total Environment, 2019, 654: 1270-1283 CrossRef
  63. Fliegerova K., Kaerger K., Kirk P., Voigt K. Rumen fungi. In: Rumen microbiology: from evolution to revolution. A. Puniya, R. Singh, D. Kamra (eds.). Springer, New Delhi, 2015: 97-112 CrossRef
  64. Newbold C.J., De la Fuente G., Belanche A., Ramos-Morales E., McEwan N.R. The role of ciliate protozoa in the rumen. Frontiers in Microbiology, 2015, 6: 1313 CrossRef
  65. Liang J., Nabi M., Zhang P., Zhang G., Cai Y., Wang Q., Ding Y. Promising biological conversion of lignocellulosic biomass to renewable energy with rumen microorganisms: A comprehensive review. Renewable and Sustainable Energy Reviews, 2020, 134: 110335 CrossRef
  66. Saptarshi S.R., Duschl A., Lopata A.L. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. Journal of Nanobiotechnology, 2013, 11(1): 26 CrossRef
  67. Spagnoletti F.N., Kronberg F., Spedalieri C., Munarriz E., Giacometti R. Protein corona on biogenic silver nanoparticles provides higher stability and protects cells from toxicity in comparison to chemical nanoparticles. Journal of Environmental Management, 2021, 297: 113434 CrossRef
  68. Galindo T.P.S., Pereira R., Freitas A.C., Santos-Rocha T.A.P., Rasteiro M.G., Antunes F., Rodrigues D., Soares A.M.V.M., Gonçalves F., Duarte A.C., Lopes I. Toxicity of organic and inorganic nanoparticles to four species of white-rot fungi. Science of the Total Environment, 2013, 458-460: 290-297 CrossRef
  69. Parsai T., Kumar A. Effect of seawater acidification and plasticizer (Bisphenol-A) on aggregation of nanoparticles. Environmental Research, 2021, 201: 111498 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)