PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2023.6.974eng

UDC: 636.2:591.16:612.6

Acknowledgements:
Supported financially from the Russian Science Foundation, project № 21-76-10042

 

THE INFLUENCE OF VARIOUS KISSPEPTINS ON THE REPRODUCTIVE FUNCTION OF Bos taurus (review)

G.V. Shiryaev1, A.О. Prituzhalova1, G.S. Nikitin1, 2,
E.V. Nikitkina1, A.A. Musidray1, A.Yu. Alekseeva3

1All-Russian Research Institute for Farm Animal Genetics and Breeding — Branch of Ernst Federal Science Center for Animal Husbandry, 55А, Moskovskoe sh., pos. Tyarlevo, St. Petersburg—Pushkin, 196625 Russia, e-mail
gs-2027@yandex.ru (✉ corresponding author), aklevakina14@mail.ru, nikitkinae@mail.ru, 13linereg@mail.ru;
2Saint-Petersburg State University of Veterinary Medicine, 5, ul. Chernigovskaya, St. Petersburg, 196084 Russia,
e-mail nikitin.g.s007@mail.ru;
3Saint Petersburg State Agrarian University, 2, lit A, Peterburgskoe sh., St. Petersburg—Pushkin, 196605 Russia, e-mail genetikaspbgau@mail.ru

ORCID:
Shiryaev G.V. orcid.org/0000-0002-4698-3917
Nikitkina E.V. orcid.org/0000-0002-8496-5277
Prituzhalova A.О. orcid.org/0000-0002-2865-9582
Musidray A.A. orcid.org/0000-0002-0079-9938
Nikitin G.S. orcid.org/0000-0002-2080-2970
Alekseeva A.Yu. orcid.org/0000-0003-3683-4325

Final revision received September 16, 2022
Accepted March 03, 2023

Kisspeptins (KP) are a family of peptides of various lengths with a receptor (KISS1R). Kisspeptins with gonadotropin hormone-releasing hormone (GnRH), gonadotropins (luteinizing hormone and follicle-stimulating hormone) and sexual steroids are important regulators of reproductions of various animals (S. Ohkura et al., 2009; K.-L. Hu et al., 2018). Active study of KP began in 2003. However, at present, there is not enough information about the possibilities with the help of KP to purposefully and effectively control the sexual cycle of Bos taurus cows (especially the milk direction) (B.R. Alves et al., 2015; T. Songraphasuk et al., 2021). The KP is produced mainly in neurons of various nuclei of the hypothalamus (V. Prashar et al., 2023). Considering that the location of neurons producing the KP is specific, the approaches to control with their help the reproductive function may vary (A. Gunn et al., 2020). Kisspeptin is synthesized using the gene kiss1. Initially, the KP is hydrolyzed to the KP-53, which later breaks up to shorter peptides (KP-14, KP-13 and KP-10) with various biological activity (A.E. Oakley et al., 2009; J. Tomikawa et al., 2010). Neurons producing KP are also coexption of peptide neurokinin B (NKB) and dinorfin, which determined the name of this population of nerve cells (KNDy-neurons, kisspeptin/neurokinin B/dinorphin) (R.L. Goodman et al., 2013; Q. Xie et al., 2022). In cattle KNDY-neurons are mainly fixed in the arcuate nucleus of the hypothalamus, which is considered important for both positive and negative reverse regulation by sex steroids of the synthesis of GnRH (A. Hassaneen et al., 2016; Y. Uenoyama et al., 2021). Using the histochemical method, it was demonstrated that the activation of KNDy-neurons in cattle depends on the phase of the sexual cycle (A. Hassaneen et al., 2016). Kisspeptin-, neurokinin В-, and dinorfin-immunoreactive cellular bodies and fibers detecting throughout the arcuathed nucleus of the hypothalamus in all phases. Unlike the arcuathed nucleus, numerous kisspeptin-immunoreactive cellular bodies were found in the reservoir region of the hypothalamus in the follicular phase, while only a few immunoreactive cellular bodies are recorded in the luteal phase. As for neurokinin, in the reservoir region a small amount of neurokinin of B-immunoreactive cellular bodies and fibers in both the follicular and lutein phase is naked. Dinorfin-immunoreactive cellular bodies and fibers in the follicular phase were larger than in luteal phase. In this regard, cattle are closer to sheep and primates, including human (V.M. Tanco et al., 2016). Since the initial identification of KNDy-neurons producing KP, there are a large number of unresolved issues relating to the function of various populations of these nerve cells, depending on the location, as well as the possibilities of new technologies for their study, including in relation to Bos taurus. There is a need to study various concentrations of kisspeptins and their influence on the ovulation of cows. This review discusses the basic information about the location and structural-functional characteristics of the Bos taurus KP, the distribution and functions of the KP neurons in the brain, the content of the KP in the blood and their effect on the organs of the reproductive system. Separately data on the exogenous regulation of KP functioning of the reproductive system Bos taurus are discussed. The emphasis is on scientific research data, the main object of which was Bos taurus animals.

Keywords: Bos taurus, cows, hormone, estrus cycle, kisspeptin, gonadotropin-releasing hormone, neurons.

 

REFERENCES

  1. Abreu A.P., Kaiser U.B. Pubertal development and regulation. The Lancet Diabetes & Endocrinology, 2016, 4(3): 254-264 CrossRef
  2. Pielecka-Fortuna J., Chu Z., Moenter S. Kisspeptin acts directly and indirectly to increase Gonadotropin-Releasing hormone neuron activity and its effects are modulated by estradiol. Endocrinology, 2008, 149(4): 1979-86 CrossRef
  3. Uenoyama Y., Inoue N., Nakamura S., Tsukamura H. Kisspeptin neurons and estrogen-estrogen receptor α signaling: unraveling the mystery of steroid feedback system regulating mammalian reproduction. International Journal of Molecular Sciences, 2021, 22(17): 9229 CrossRef
  4. Hu K.-L., Zhao H., Chang H.-M., Yu Y., Qiao, J. Kisspeptin/Kisspeptin receptor system in the ovary. Frontiers in Endocrinology, 2018, 8: 365 CrossRef
  5. Prashar V., Arora T., Singh R., Sharma A., Parkash J. Hypothalamic kisspeptin neurons: integral elements of the GnRH system. Reproductive Sciences, 2023, 30(3): 802-822 CrossRef
  6. Oakley A.E., Clifton D.K., Steiner R.A. Kisspeptin signaling in the brain. Endocrine Reviews, 2009, 30(6): 713-743 CrossRef
  7. Ohkura S., Uenoyama Y., Yamada S., Homma T., Takase K., Inoue N., Maeda K-I., Tsukamura H. Physiological role of metastin/kisspeptin in regulating gonadotropinreleasing hormone (GnRH) secretion in female rats. Peptides, 2009, 30(1): 49-56 CrossRef
  8. Clarke I.J. Control of GnRH secretion: one step back. Frontiers in Neuroendocrinology, 2011, 32(3): 367-375 CrossRef
  9. Goodman R.L., Maltby M.J., Millar R.P., Hileman S.M., Nestor C.C., Whited B., Tseng A.S., Coolen L.M., Lehman M.N. Evidence that dopamine acts via kisspeptin to hold GnRH pulse frequency in check in anestrous ewes. Endocrinology, 2012, 153(12): 5918-27 CrossRef
  10. Caraty A., Decourt C., Briant C., Beltramo M. Kisspeptins and the reproductive axis: potential applications to manage reproduction in farm animals. Domestic Animal Endocrinology, 2012, 43(2): 95-102 CrossRef
  11. Tomikawa J., Homma T., Tajima S., Shibata T., Inamoto Y., Takase K., Inoue N., Ohkura S., Uenoyama Y., Maeda K.-I., Tsukamura H. Molecular characterization and estrogen regulation of hypothalamic KISS1 gene in the pig. Biology of Reproduction, 2010, 82(2): 313-319 CrossRef
  12. Uenoyama Y., Nagae M., Tsuchida H., Inoue N., Tsukamura H. Role of KNDy neurons expressing kisspeptin, neurokinin B, and dynorphin A as a GnRH pulse generator controlling mammalian reproduction. Front. Endocrinol., 2021, 12: 724632 CrossRef
  13. Ohkura S., Takase K., Matsuyama S., Mogi K., Ichimaru T., Wakabayashi Y., Uenoyama Y., Mori Y., Steiner R.A., Tsukamura H., Maeda K.-I., Okamura H. Gonadotrophinreleasing hormone pulse generator activity in the hypothalamus of the goat. Journal of Neuroendocrinology, 2009, 21(10): 813-821 CrossRef
  14. Kotani M., Detheux M., Vandenbogaerde A., Communi D., Vanderwinden J.M., Le Poul E., Brézillon S., Tyldesley R., Suarez-Huerta N., Vandeput F., Blanpain C., Schiffmann S.N., Vassart G., Parmentier M. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. The Journal of Biological Chemistry, 2001, 276(37): 34631-34636 CrossRef
  15. Ohtaki T., Shintani Y., Honda S., Matsumoto H., Hori A., Kanehashi K., Terao Y., Kumano S., Takatsu Y., Masuda Y., Ishibashi Y., Watanabe T., Asada M., Yamada T., Suenaga M., Kitada C., Usuki S., Kurokawa T., Onda H., Nishimura O., Fujino M. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature, 2001, 411(6837): 613-617 CrossRef
  16. Foradori C.D., Amstalden M., Goodman R.L., Lehman M.N. Colocalisation of dynorphin A and neurokinin B immunoreactivity in the arcuate nucleus and median eminence of the sheep. Journal of Neuroendocrinology, 2006, 18(7): 534-541 CrossRef
  17. Goodman R.L., Lehman M.N., Smith J.T., Coolen L.M., de Oliveira C.V., Jafarzadehshirazi M.R., Pereira A., Iqbal J., Caraty A., Ciofi P., Clarke I.J. Kisspeptin neurons in the arcuate nucleus of the ewe express both dynorphin A and neurokinin B. Endocrinology, 2007, 148(12): 5752-5760 CrossRef
  18. Goodman R.L., Hileman S.M., Nestor C.C., Porter K.L., Connors J.M., Hardy S.L., Millar R.P., Cernea M., Coolen L.M., Lehman M.N. Kisspeptin, neurokinin B, and dynorphin act in the arcuate nucleus to control activity of the GnRH pulse generator in ewes. Endocrinology, 2013, 154(11): 4259-4269 CrossRef
  19. Xie Q., Kang Y., Zhang C., Xie Y., Wang C., Liu J., Yu C., Zhao H., Huang D. The role of kisspeptin in the control of the hypothalamic-pituitary-gonadal axis and reproduction. Front. Endocrinol., 2022, 13: 925206 CrossRef
  20. Burke M.C., Letts P.A., Krajewski S.J., Rance N.E. Coexpression of dynorphin and neurokinin B immunoreactivity in the rat hypothalamus: Morphologic evidence of interrelated function within the arcuate nucleus. J. Comp. Neurol., 2006, 498(5): 712-726 CrossRef
  21. Cheng G., Coolen L.M., Padmanabhan V., Goodman R.L., Lehman M.N. The kisspeptin/neurokinin B/dynorphin (KNDy) cell population of the arcuate nucleus: sex differences and effects of prenatal testosterone in sheep. Endocrinology, 2010, 151(1): 301-311 CrossRef
  22. Hassaneen A., Naniwa Y., Suetomi Y., Matsuyama S., Kimura K., Ieda N., Inoue N., Uenoyama Y., Tsukamura H., Maeda K.-I., Matsuda F., Ohkura S. Immunohistochemical characterization of the arcuate kisspeptin/neurokinin B/dynorphin (KNDy) and preoptic kisspeptin neuronal populations in the hypothalamus during the estrous cycle in heifers. Journal of Reproduction and Development, 2016, 62(5): 471-477 CrossRef
  23. Alves B.R., Cardoso R.C., Prezotto L.D., Thorson J.F., Bedenbaugh M., Sharpton S.M., Caraty A., Keisler D.H., Tedeschi L.O., Williams G.L., Amstalden M. Elevated body weight gain during the juvenile period alters neuropeptide Y-gonadotropin-releasing hormone circuitry in prepubertal heifers. Biology of Reproduction, 2015, 92(2): 46 CrossRef
  24. Songphasuk T., Wannapong N., Thanantong N., Sajapitak S. Preliminary study of kisspeptin mRNA-expressing neurons at POA and ARC in hypothalamus of beef cattle. Journal of Mahanakorn Veterinary Medicine, 2021, 16(1): 99-107.
  25. Gunn A., Rose J., Scott C., Scott R. Kisspeptin and RFamide-related peptide 3 neurons in bovine hypothalamus: estrogen receptor expression and inputs to gonadotrophin releasing hormone neurons. In: SFT — Theriogenology Annual Conference Online, 2020 by Society for Theriogenology. Available: https://www.ivis.org/library/sft/sft-theriogenology-annual-conference-online-2020#table-of-content. No date.
  26. Franceschini I., Lomet D., Cateau M., Delsol G., Tillet Y., Caraty A. Kisspeptin immunoreactive cells of the ovine preoptic area and arcuate nucleus co-express estrogen receptor alpha. Neuroscience Letters, 2006, 401(3): 225-230 CrossRef
  27. Foradori C.D., Goodman R.L., Adams V.L., Valent M., Lehman M.N. Progesterone increases dynorphin a concentrations in cerebrospinal fluid and preprodynorphin messenger ribonucleic acid levels in a subset of dynorphin neurons in the sheep. Endocrinology, 2005, 146(4): 1835-1842 CrossRef
  28. Ruiz-Pino F., Navarro V.M., Bentsen A.H., Garcia-Galiano D., Sanchez-Garrido M.A., Ciofi P., Steiner R.A., Mikkelsen J.D., Pinilla L., Tena-Sempere M. Neurokinin B and the control of the gonadotropic axis in the rat: developmental changes, sexual dimorphism, and regulation by gonadal steroids. Endocrinology, 2012, 153(10): 4818-4829 CrossRef
  29. Tanco V.M., Whitlock B.K., Jones M.A., Wilborn R.R., Brandebourg T.D., Foradori C.D. Distribution and regulation of gonadotropin-releasing hormone, kisspeptin, RF-amide related peptide-3, and dynorphin in the bovine hypothalamus. PeerJ, 2016, 4: e1833 CrossRef
  30. Clarkson J., Herbison A.E. Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone neurons. Endocrinology, 2006, 147(12): 5817-5825 CrossRef
  31. Smith J.T., Clay C.M., Caraty A., Clarke I.J. KiSS-1 messenger ribonucleic acid expression in the hypothalamus of the ewe is regulated by sex steroids and season. Endocrinology, 2007, 148(3): 1150-1157 CrossRef
  32. Wakabayashi Y., Nakada T., Murata K., Ohkura S., Mogi K., Navarro V.M., Clifton D.K., Mori Y., Tsukamura H., Maeda K., Steiner R.A., Okamura H. Neurokinin B and dynorphin A in kisspeptin neurons of the arcuate nucleus participate in generation of periodic oscillation of neural activity driving pulsatile gonadotropin-releasing hormone secretion in the goat. Journal of Neuroscience, 2010, 30(8): 3124-3132 CrossRef
  33. Tsukamura H. Kobayashi Award 2019: The neuroendocrine regulation of the mammalian reproduction. General and Comparative Endocrinology, 2022, 315: 113755 CrossRef
  34. Ikegami K., Minabe S., Ieda N., Goto T., Sugimoto A., Nakamura S., Inoue N., Oishi S., Maturana A. D., Sanbo M., Hirabayashi M., Maeda K.-I., Tsukamura H., Uenoyama Y. Evidence of involvement of neurone-glia/neurone-neurone communications via gap junctions in synchronised activity of KNDy neurones. Journal of Neuroendocrinology, 2017, 29(6): 1-14 CrossRef
  35. Scott C.J., Rose J.L., Gunn A.J., McGrath B.M. Kisspeptin and the regulation of the reproductive axis in domestic animals. Journal of Endocrinology, 2019, 240(1): R1-R16 CrossRef
  36. Chernukha G.E., Tabeeva G.I., Gusev D.V., Shmakov R.G. Doktor.Ru, 2017, 3(132): 73-78 (in Russ.).
  37. Clarke I.J., Reed C.B., Burke C.R., Li Q., Meier S. Kiss1 expression in the hypothalamic arcuate nucleus is lower in dairy cows of reduced fertility. Biology of Reproduction, 2022, 106(4): 802-813 CrossRef
  38. Ghaderpour S., Ghiasi R., Heydari H., Keyhanmanesh R. The relation between obesity, kisspeptin, leptin, and male fertility. Hormone Molecular Biology and Clinical Investigation, 2022, 43(2): 235-247 CrossRef
  39. Leonardi C.E., Carrasco R.A., Dias F.C., Adams G.P., Singh J. Distribution of gonadotropin-releasing hormone and kisspeptin neurons in the preoptic area and hypothalamus during the estrous cycle in cows. Reproduction, Fertility and Development, 2018, 30(1): 191-192 CrossRef
  40. Moore A.M., Coolen L.M., Porter D.T., Goodman R.L., Lehman M.N. KNDy cells revisited. Endocrinology, 2018, 159(9): 3219-3234 CrossRef
  41. Cardoso C., Alves B.R.C., Williams G.L. Neuroendocrine signaling pathways and the nutritional control of puberty in heifers Rodolfo. Anim. Reprod., 2018, 15(1): 868-878 CrossRef
  42. Cardoso R.C., Alves B.R., Sharpton S.M., Williams G.L., Amstalden M. Nutritional programming of accelerated puberty in heifers: involvement of pro-opiomelanocortin neurones in the arcuate nucleus. J. Neuroendocrinol., 2015, 27(8): 647-657 CrossRef
  43. Rønnekleiv O.K., Qiu, J., Kelly M.J. Arcuate kisspeptin neurons coordinate reproductive activities with metabolism. Seminars in Reproductive Medicine, 2019, 37(3): 131-140 CrossRef
  44. Rizzo A., Ceci E., Guaricci A.C., Sciorsci R.L. Kisspeptin in the early postpartum of the dairy cow. Reproduction in Domestic Animals, 2018, 54(2): 195-198 CrossRef
  45. Rizzo A., Piccinno M., Ceci E., Pantaleo M., Mutinati M., Roncetti M., Sciorsci R.L. Kisspeptin and bovine follicular cysts. Veterinaria Italiana, 2018, 54(1): 29-31 CrossRef
  46. D’Occhio M.J., Campanile G., Baruselli P.S. Peripheral action of kisspeptin at reproductive tissues — role in ovarian function and embryo implantation and relevance to assisted reproductive technology in livestock: a review. Biology of Reproduction, 2020, 103(6): 1157-1170 CrossRef
  47. Liu H., Mesalam A., Joo M.-D., Zhang S., Xu L., Wang J., Lee K.-L., Song S.-H., Yuan Y.-G., Lu W., Kong I.-K. Fibronectin protected bovine preantral follicles from the deleterious effects of Kisspeptin. Theriogenology, 2020, 161: 301-312 CrossRef
  48. Liu H., Xu G., Yuan Z., Dong Y., Wang J., Lu W. Effect of kisspeptin on the proliferation and apoptosis of bovine granulosa cells. Animal Reproduction Science, 2017, 185: 1e7 CrossRef
  49. Guo L., Xu H., Li Y., Liu H., Zhao J., Lu W., Wang J. Kisspeptin-10 promotes progesterone synthesis in bovine ovarian granulosa cells via downregulation of microRNA-1246. Genes, 2022, 13(2): 298 CrossRef
  50. Soares M.M., Antonino D.D.C., Oliveira M., Melo Júnior J., Peixoto L.R., Maia T.S., Alves K.A., Jacomini J.O., Dos Santos R.M., Macedo G.G. The role of Kisspeptin in bovine in vitro embryo production. Semina: Ciências Agrárias, 2018, 39(2): 621-630 CrossRef
  51. Martino N.A., Rizzo A., Pizzi F., Dell'Aquila M.E., Sciorsci R.L. Effects of kisspeptin-10 on in vitro proliferation and kisspeptin receptor expression in primary epithelial cell cultures isolated from bovine placental cotyledons of fetuses at the first trimester of pregnancy. Theriogenology, 2015, 83(6): 978-987.e1 CrossRef
  52. Plemyashov K.V., Andreev G.M., Zakharov P.G., Kuz’min V.A., Shchepetkina S.V. Prakticheskie rekomendatsii po vosproizvodstvu krupnogo rogatogo skota [Practical recommendations for cattle reproduction]. St. Petersburg, 2008 (in Russ.).
  53. Leonardi C.E.P. Kisspeptin function in female bovine reproduction. PhD Thesis. University of Saskatchewan, Saskatoon, Canada, 2018. Available: https://harvest.usask.ca/handle/10388/9597. No date.
  54. Kadokawa H., Suzuki S., Hashizume T. Kisspeptin-10 stimulates the secretion of growth hormone and prolactin directly from cultured bovine anterior pituitary cells. Animal Reproduction Science, 2008, 105(3-4): 404-408 CrossRef
  55. Gottsch M.L., Clifton D.K., Steiner R.A. From KISS1 to kisspeptins: An historical perspective and suggested nomenclature. Peptides, 2009, 30(1): 4-9 CrossRef
  56. Ezzat A. A., Saito H., Sawada T., Yaegashi T., Goto Y., Nakajima Y., Jin J., Yamashita T., Sawai K., Hashizume T. The role of sexual steroid hormones in the direct stimulation by Kisspeptin-10 of the secretion of luteinizing hormone, follicle-stimulating hormone and prolactin from bovine anterior pituitary cells. Animal Reproduction Science, 2010, 121(3-4): 267-272 CrossRef
  57. Ezzat A.A., Pereira A., Clarke I.J. Kisspeptin is a component of the pulse generator for GnRH secretion in female sheep but not THE pulse generator. Endocrinology, 2015, 156(5): 1828-1837 CrossRef
  58. Lehman M.N., Hileman S.M., Goodman R.L. Neuroanatomy of the kisspeptin signaling system in mammals: comparative and developmental aspects In: Kisspeptin signaling in reproductive biology. Advances in experimental medicine and biology, vol. 784. A. Kauffman, J. Smith (eds.). Springer, New York, NY, 2013: 27-62 CrossRef
  59. Kadokawa H. Seasonal differences in the parameters of luteinizing hormone release to exogenous gonadotropin releasing hormone in prepubertal Holstein heifers in Sapporo. Journal of Reproduction and Development, 2007, 53(1): 121-125 CrossRef
  60. Whitlock B.K., Daniel J.A., Wilborn R.R., Rodning S.P., Maxwell H.S., Steele B.P., Sartin J.L. Interaction of estrogen and progesterone on kisspeptin-10-stimulated luteinizing hormone and growth hormone in ovariectomized cows. Neuroendocrinology, 2008, 88(3): 212-215 CrossRef
  61. Whitlock B.K., Daniel J.A., Wilborn R.R., Maxwell H.S., Steele B.P., Sartin J.L. Interaction of kisspeptin and the somatotropic axis. Neuroendocrinology, 2010, 92(3): 178-188 CrossRef
  62. Ahmed A.E., Goto Y., Saito H., Sawada T., Jin J., Hirata T., Hashizume T. Gonadotropin-releasing response to kisspeptin-10 and its modulation by progesterone in postpartum cyclic cows. Iranian Journal of Applied Animal Science, 2013, 3: 471-476.
  63. Naniwa Y., Nakatsukasa K., Setsuda S., Oishi S., Fujii N., Matsuda F., Uenoyama Y., Tsukamura H., Maeda K.-i., Ohkura S. Effects of full-length kisspeptin administration on follicular development in Japanese black beef cows. Journal of Reproduction and Development, 2013, 59(6): 588-594 CrossRef
  64. Pottapenjera V., Rajanala S.R., Reddy C., Gangineni A., Avula K., Bejjanki S.K., Sathagopam S., Kesharwani S., Velmurugan S. Kisspeptin modulates luteinizing hormone release and ovarian follicular dynamics in prepubertal and adult murrah buffaloes. Frontiers in Veterinary Science, 2018, 5: 149 CrossRef
  65. Flay H.E., Reed C.B., Kuhn-Sherlock B., Phyn C.V.C., Burke C.R., Meier S., Clarke I.J. Response to kisspeptin and gonadotropin-releasing hormone agonist administration in Holstein-Friesian dairy heifers with positive or negative genetic merit for fertility traits. Journal of Dairy Science, 2022, 105(4): 3601-3614 CrossRef
  66. Rodríguez M.A., Calderón Robles R.C., Rosete Fernándezb J.V., Hernándezc K. R., Vera Ávilad H.R., Arreguín Arévaloe J.A., Nette T.M., Gutiérrez Aguilarf C.G., Padillaf E.G., Gómez-Chavaríng M., Godoya A.V. Kisspeptin in prepubertal heifers: I. Effects of age on the response of LH, FSH and GH to kisspeptin-10 and its association with IGF-I, leptin and estradiol. Revista Mexicana de Ciencias Pecuarias, 2017, 8(4): 375-385 CrossRef
  67. Ezzat Ahmed A., Saito H., Sawada T., Yaegashi T., Yamashita T., Hirata T.-I., Sawai K., Hashizume T. Characteristics of the Stimulatory Effect of Kis-speptin-10 on the secretion of luteinizing hormone, follicle-stimulating hormone and growth hormone in prepubertal male and female cattle. Journal of Reproduction and Development, 2009, 55(6): 650-654 CrossRef
  68. Ezzat A.A., Haridy M., Kassab A.Y., Ahmed H., Senosy W., Toh-Ichi H., Tsutomu H. The efficiency of Kisspeptin and GnRH as stimulators of gonadotrophins and testosterone in prepubertal male cattle. Zagazig Veterinary Journal, 2018, 46(2): 136-145 CrossRef
  69. Northup S.L., Coffman E.A., Strickland L.G., Pohler K.G., Daniel J.A., Whitlock B.K. Intravenous infusion of kisspeptin increased serum luteinizing hormone acutely and decreased serum follicle stimulating hormone chronically in prepubertal bull calves. Theriogenology, 2020, 144: 1-7 CrossRef
  70. Role Cortés M.E., Carrera B., Rioseco H., Pablo del Río J., Vigil P. The role of kisspeptin in the onset of puberty and in the ovulatory mechanism: a minireview. Journal of Pediatric and Adolescent Gynecology, 2015, 28(5): 286-291 CrossRef
  71. Macedo G.G., Mingoti R.D., Batista E.O.S., Monteiro B.M., Vieira L.M., Barletta R.V., Wiltbank M.C., Nogueira G.P., Rennó F.P., Maio J.R., Baruselli P.S. Profile of LH re-lease in response to intramuscular treatment with kisspeptin in Bos indicus and Bos taurus prepubertal heifers. Theriogenology, 2019, 125: 64-70 CrossRef
  72. Mondal M., Baruah K.K., Karunakaran M., Ghosh M.K., Dutta T.K. Development of a new kisspeptin based method of ovulation synchronization for crossbred dairy heifers. Journal of Dairy Science and Technology, 2018, 4(3): 12-16.
  73. Curtis A.E., Cooke J.H., Baxter J.E., Parkinson J.R.C., Bataveljic A., Ghatei M.A., Bloom S.R., Murphy K.G. A kisspeptin-10 analog with greater in vivo biactivity than kisspeptin-10. Am. J. Physiol. Endocrinol. Metab., 2010, 298(2): E296-E303 CrossRef
  74. Parker P.A., Coffman E.A., Pohler K.G., Daniel J.A., Aucagne V., Beltramo M., Whitlock B. K. Acute and subacute effects of a synthetic kisspeptin analog, C6, on serum concentrations of luteinizing hormone, follicle stimulating hormone, and testosterone in prepubertal bull calves. Theriogenology, 2019, 130, 111-119 CrossRef
  75. Burke C.R, Roche J.R., Millar R.P., Clarke I.J. Onset of normal cycles in postpartum anovulatory dairy cattle treated with kisspeptin. Reproduction and Fertility, 2022, 2(1): 1-8 CrossRef
  76. Popa S.M., Moriyama R.M., Caligioni C.S., Yang J.J., Cho C.M., Concepcion T.L., Oakley A.E., Lee I.H., Sanz E., Amieux P.S., Caraty A., Palmiter R.D., Navarro V.M., Chan Y.M., Seminara S.B., Clifton D.K., Steiner R.A. Redundancy in Kiss1 expression safeguards reproduction in the mouse. Endocrinology, 2013, 154(8): 2784-2794 CrossRef
  77. Hussain M.A., Song W.-J., Wolfe A. There is kisspeptin — and then there is kisspeptin. Trends in Endocrinology & Metabolism, 2015, 26(10): 564-572 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)