PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2023.6.953eng

UDC: 639.3.03:575.22

 

CANDIDATE GENES PROMISING FOR MARKER-ASSISTED SELECTION IN AQUACULTURE (review)

N.B. Pisarenko

Ernst Federal Research Center for Animal Husbandry, 60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail nadezhda.pisarenko13@mail.ru (✉ corresponding author)

ORCID:
Pisarenko N.B. orcid.org/0000-0001-9645-2279

Final revision received September 15, 2023
Accepted October 20, 2023

Modern aquaculture is a rapidly developing sector of food production that serves as a source of animal protein, essential amino acids, fats, vitamins, minerals, enzymes and is important for food security. In Russia, commercial fish farming is still significantly inferior in volume to industrial fish farming. A promising approach in the scientific support of commercial aquaculture is the search for polymorphic loci in candidate genes and the identification of reliable associations between various genotypes and productivity indicators for subsequent marker-assisted selection (MAS) of commercial aquaculture objects. The purpose of this review was to summarize and analyze publications concerning single nucleotide polymorphism (SNP) in genes affecting size and weight in fish. Body weight is one of the economically important characteristics for which selection is carried out in fish farms. It depends on the growth of skeletal muscle, so genes that influence the growth and development of muscle tissue are considered as potential candidate genes. The most important of them include the genes for myostatin (MSTN), insulin-like growth factors I and II (IGF-I, IGF-II), growth hormone (GH) and growth hormone receptor (GHR) (X.Y. Dai et al., 2015; D.L. Li et al., 2014). When assessing the effect of candidate genes on a particular trait, polymorphisms in those genes are first examined, and then the relationship between specific alleles/genotypes and phenotypic expression of the trait of interest is statistically assessed. If significant associations are found, this is considered evidence that the gene is either directly involved in the genetic control of the trait, or the functional polymorphism is located sufficiently close to the marker and the two loci are in linkage disequilibrium (M. Lynch and B. Walsh, 1997; D.L. Yowe and R. J. Epping, 1995). Myostatin plays an important role in inhibiting muscle growth and development. In most mammals, the loss or inactivation of myostatin (MSTN-/-) causes an increase in the size and number of myofibers, which leads to an increase in muscle mass (A. Clop et al., 2006; L. Grobet et al., 1997; D.S. Mosher et al. al., 2007; S. Rao et al., 2016). The genes for insulin-like growth factors I and II encode the corresponding polypeptide hormones which have a molecular structure similar to proinsulin and play an important role in regulation of growth, development and differentiation of cells and tissues in vertebrates (J.I. Jones et al., 1995; M Codina et al., 2008). Insulin-like growth factors I and II are the most important endocrine mediators of the action of growth hormone; they are synthesized in the liver, skeletal muscles and other tissues (W.J. Tao and E.G. Boulding, 2003; K.M. Reindl et al., 2011). Growth hormone, or somatotropin, is a polypeptide hormone that is synthesized in the somatotropic cells of the pituitary gland and participates in the regulation of somatic growth in fish (J.I. Johnsson and B.T. Björnsson, 1994; B. Cavari et al., 1993). The growth hormone receptor is a transmembrane protein that belongs to the class 1 cytokine receptor superfamily and serves as an important regulator of growth and metabolism (T. Zhu et al., 2001). GHR as a receptor mediates the biological effects of growth hormone on target cells by transmitting a stimulatory signal across the cell membrane with subsequent induction of transcription of many genes, including IGF-I (Y. Kobayashi et al., 1999). SNPs in the genes MSTN, IGF-I, IGF-II, GH, RGH can affect the size and weight in various fish species and can be an auxiliary tool in breeding programs (D. Gencheva and S. Stoyanova, 2018; C. De-Santis and D.R. Jerry, 2007; Y. Sun et al., 2012). The functional characterization and associations of growth and development indicators with genetic polymorphisms in the genes of myostatin, insulin-like growth factors I and II, growth hormone and growth hormone receptor considered in the review allow us to recommend these genes as the most promising candidates for searching polymorphic loci with subsequent statistical assessment of the genotype—trait relationship. The reliable associations can be used in marker selection to replace broodstocks and improve the efficiency of commercial aquaculture.

Keywords: candidate genes, aquaculture, body weight, polymorphic locus, marker-assisted selection, MSTN, myostatin, IGF-I, IGF-II, insulin-like growth factors I and II, GH, growth hormone, RGH, growth hormone receptor.

 

REFERENCES

  1. FAO. Costoyanie mirovogo rybolovstva i akvakul’tury—2022. Na puti k “goluboy” transformatsii [FAO. The State of World Fisheries and Aquaculture—2022. On the way to a “blue” transformation]. Rim, 2022 CrossRef (in Russ.).
  2. Federal’noe agentstvo po rybolovstvu. Available: https://fish.gov.ru/. No date (in Russ.).
  3. O razvitii i podderzhke akvakul’tury (rybovodstva) v Rossiyskoy Federatsii /Pod red. E.S. Kats, A.A. Naryshkina [On the development and support of aquaculture (fish farming) in the Russian Federation. E.S. Kats, A.A. Naryshkin (eds.)]. Moscow, 2020 (in Russ.).
  4. Bogachev A.I. Vestnik Mariyskogo gosudarstvennogo universiteta, 2018, 4(1): 47-54 (in Russ.).
  5. Aboukila R.S., Hemeda S.E., El Nahas A.F., El Naby W.S. Molecular characterization of GHR1 gene and expression analysis of some growth-related genes in Oreochromis niloticus. Advances in Animal and Veterinary Sciences, 2021, 9(7): 1025-1033 CrossRef
  6. Dai X.Y., Zhang W., Zhuo Z.J., He J.Y., Yin Z. Neuroendocrine regulation of somatic growth in fishes. Science China Life Sciences, 2015, 58 (2): 137-147 CrossRef
  7. Li D.L., Lou Q.Y., Zhai G., Peng X.Y., Cheng X.X., Dai X.Y., Zhuo Z.J., Shang G.H., Jin X., Chen X.W., Han D., Yin Z. Hyperplasia and cellularity changes in IGF-1-overexpressing skeletal muscle of crucian carp. Endocrinology, 2014, 155(6): 2199-2212 CrossRef
  8. Gencheva D., Stoyanova S. Polymorphisms of the candidate genes associated with the growth traits in common carp (Cyprinus carpio L.). Agricultural Sciences, 2018, 10(23): 27-32 CrossRef
  9. De-Santis C., Jerry D.R. Candidate growth genes in finfish — where should we be looking? Aquaculture, 2007, 272: 22-38 CrossRef
  10. Seiliez I., Sabin N., Gabillard J. Myostatin inhibits proliferation but not differentiation of trout myoblasts. Molecular and Cellular Endocrinology, 2012, 351(2): 220-226 CrossRef
  11. Fuentes E.N., Valdés J.A., Molina F., Björnsson B.T. Regulation of skeletal muscle growth in fish by the growth hormone Insulin-like growth factor system. General and Comparative Endocrinology, 2013, 192: 136-148 CrossRef
  12. Tang Y.K., Li J.L., Yu J.H., Chen X.F., Li H.X. Genetic structure of MSTN and association between its polymorphisms and growth traits in genetically improved farmed tilapia (GIFT). Journal of Fishery Sciences of China, 2010, 17(1): 44-51.
  13. Lynch M., Walsh B. Genetics and analysis of quantitative traits. Sinauer Associates, Inc., MA, Sunderland, 1998.
  14. Yowe D.L., Epping R.J. Cloning of the barramundi growth hormone-encoding gene: a comparative analysis of higher and lower vertebrate GH genes. Gene, 1995, 162: 255-259 CrossRef
  15. McPherron A.C., Lawler A.M., Lee S.J. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature, 1997, 387(6628): 83-90 CrossRef
  16. Thomas M., Langley B., Berry C., Sharma M., Kirk S., Bass J., Kambadur R. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J. Biol. Chem., 2000, 275(51): 40235-40243 CrossRef
  17. Clop A., Marcq F., Takeda H., Pirottin D., Tordoir X., Bibe B., Bouix J., Caiment F., Elsen M., Eychenne F., Larzul C., Laville E., Meish F., Milenkovic D., Tobin J., Charlier C., Georges M. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet., 2006, 38(7): 813-818 CrossRef
  18. Grobet L., Martin L.J., Poncelet D., Pirottin D., Brouwers B., Riquet J., Schoeberlein A., Dunner S., Menissier F., Massabanda J., Fries R., Hanset R., Georges M. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nature Genetics, 1997, 17(1): 71-74 CrossRef
  19. Mosher D.S., Quignon P., Bustamante C.D., Sutter N.B., Mellersh C.S., Parker H.G., Ostrander E.A. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genetics, 2007, 3(5): 779-786 CrossRef
  20. Rao S., Fujimura T., Matsunari H., Sakuma T., Nakano K., Watanabe M., Asano Y., Kitagawa E., Yamamoto T., Nagashima H. Efficient modification of the myostatin gene in porcine somatic cells and generation of knockout piglets. Molecular Reproduction and Development, 2016, 83(1): 61-70 CrossRef
  21. Østbye T.-K., Galloway T.F., Nielsen C., Gabestad I., Bardal T., Andersen O. The two myostatin genes of Atlantic salmon (Salmo salar) are expressed in a variety of tissues. European Journal of Biochemistry, 2001, 268(20): 5249-5257 CrossRef
  22. Rodgers B.D., Weber G.M., Sullivan C.V., Levine M.A. Isolation and characterization of myostatin complementary deoxyribonucleic acid clones from two commercially important fish: Oreochromis mossambicus and Morone chrysops. Endocrinology, 2001, 142(4): 1412-1418 CrossRef
  23. Xu C., Wu G., Zohar Y., Du S.J. Analysis of myostatin gene structure, expression and function in zebrafish. Journal of Experimental Biology, 2003, 206: 4067-4079 CrossRef
  24. Ye H.Q., Chen S.L., Sha Z.X., Liu Y. Molecular cloning and expression analysis of the myostatin gene in sea perch (Lateolabrax japonicus). Marine Biotechnology, 2007, 9: 262-272 CrossRef
  25. Maccatrozzo L., Bargelloni L., Radaelli G., Mascarello F., Patarnello T. Characterization of the myostatin gene in the gilthead seabream (Sparus aurata): sequence, genomic structure, and expression pattern. Marine Biotechnology, 2001, 3: 224-230 CrossRef
  26. Elbialy Z.I., El-Nahas A.F., Elkatatny N.A., Ammar A.Y. Quantitative expression analysis of myostatin gene in Nile tilapia (Oreochromis niloticus) tissues in adult stage. Alexandria Journal of Veterinary Sciences, 2016, 51(1): 170-173 CrossRef
  27. Kocabas A.M., Kucuktas H., Dunham R.A., Liu Z. Molecular characterization and differential expression of the myostatin gene in channel catfish (Ictalurus punctatus). Biochimica et Biophysica Acta, 2002, 1575(1-3): 99-107 CrossRef
  28. Garikipati D., Gahr S.A., Rodgers B.D. Identification, characterization and quantitative expression analysis of rainbow trout myostatin-1a and myostatin-1b genes. Journal of Endocrinology, 2006, 190(3): 879-888 CrossRef
  29. Roberts S.B., McCauley L.A.R., Devlin R.H., Goetz F.W. Transgenic salmon overexpressing growth hormone exhibit decreased myostatin transcript and protein expression. The Journal of Experimental Biology, 2004, 207(21): 3741-3748 CrossRef
  30. Zhong Q.W., Zhang Q.Q., Chen Y.J., Sun Y.Y., Qi J., Wang Z.G., Li S., Li C., Lan X. The isolation and characterization of myostatin gene in Japanese flounder (Paralichthys olivaceus): ubiquitous tissue expression and developmental specific regulation. Aquaculture, 2008, 280: 247-255.
  31. Østbye T.-K., Wetten O. F., Tooming-Klunderud A., Jakobsen K.S., Yafe A., Etzioni S., Moen T., Andersen Ø. Myostatin (MSTN) gene duplications in Atlantic salmon (Salmo salar): Evidence for different selective pressure on teleost MSTN-1 and -2. Gene, 2007, 403(1-2): 159-169 CrossRef
  32. Wang C., Chen Y.-L., Bian W.-P., Xie S.-L., Qi G.-L., Liu L., Strauss P.R., Zou J.-X., Pei D.-S. Deletion of mstna and mstnb impairs the immune system and affects growth performance in zebrafish. Fish and Shellfish Immunology, 2018, 72: 572-580 CrossRef
  33. Chiang Y.-A., Kinoshita M., Maekawa S., Kulkarni A., Lo C.-F., Yoshiura Y., Wang H.-C., Aoki T., TALENs-mediated gene disruption of myostatin produces a larger phenotype of medaka with an apparently compromised immune system. Fish Shellfish Immunology, 2016, 48: 212-220 CrossRef
  34. Radaelli G., Rowlerson A., Mascarello F., Patruno M., Funkenstein B. Myostatin precursor is present in several tissues in teleost fish: a comparative immunolocalization study. Cell and Tissue Research, 2003, 311(2): 239-250 CrossRef
  35. Roberts S.B., Goetz F.W. Differential skeletal muscle expression of myostatin across teleost species, and the isolation of multiple isoforms. FEBS Lett., 2001, 491(3): 212-216 CrossRef
  36. Yu J.H., Li H.X., Tang Y.K., Li J.L., Dong Z.J. Isolation and expression of Myostatin (MSTN) genes, and their polymorphism correlations with body form and average daily gain in Cyprinus carpio var. Journal of Agricultural Biotechnology, 2010, 18: 1062-1072.
  37. Liu L.S., Yu X.M., Tong J.G. Molecular characterization of myostatin (MSTN) gene and association analysis with growth traits in the bighead carp (Aristichthys nobilis). Molecular Biology Reports, 2012, 39(9): 9211-9221 CrossRef
  38. Stinckens A., Georges M., Buys N. Mutations in the myostatin gene leading to hypermuscularity in mammals: indications for a similar mechanism in fish? Animal Genetics, 2010, 42(3): 229-234 CrossRef
  39. Kerr T., Roalson E.H., Rodgers B.D. Phylogenetic analysis of the myostatin gene sub-family and the differential expression of a novel member in zebrafish. Evolution & Development, 2005, 7(5): 390-400 CrossRef
  40. Rodgers B.D., Garikipati D.K. Clinical, agricultural, and evolutionary biology of myostatin: a comparative review. Endocrine Reviews, 2008, 29(5): 513-534 CrossRef
  41. Jaillon O., Aury J.M., Brunet F., Petit J.L., Stange-Thomann N., Mauceli E., Bouneau L., Fischer C., Ozouf-Costaz C., Bernot A. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature, 2004, 431: 946-957 CrossRef
  42. Li H., Fan J., Liu S., Yang Q., Mu G., He C. Characterization of a myostatin gene (MSTN1) from spotted halibut (Verasper variegatus) and association between its promoter polymorphism and individual growth performance. Comparative Biochemistry and Physiology, 2012, 161(4): 315-322 CrossRef
  43. Elkatatny N.A., Elbialy Z.I., El-Nahas A.F., Mahmoud S. Characterization of myostatin gene in Nile tilapia (Oreochromis niloticus), the possible association of BsmI-exon 2 polymorphism with its growth. American Journal of Life Sciences, 2016, 4(3): 82-86 CrossRef
  44. Sun Y., Yu X., Tong J. Polymorphisms in myostatin gene and associations with growth traits in the common carp (Cyprinus carpio L.). International Journal of Molecular Sciences, 2012, 13(11): 14956-14961 CrossRef
  45. Yu J., Li H., Tang Y., Li J., Dong Z. Isolation and expression of myostatin (MSTN) genes, and their polymorphism correlations with body form and average daily gain in Cyprinus carpio var. jian. Journal of Agricultural Biotechnology, 2010, 18(6): 1062-1072.
  46. Al-Khshali M.S., Saleh N.A. Relationship of myostatin gene polymorphism with some growth traits of Common carp Cyprinus carpio L. Iraqi Journal of Agricultural Sciences, 2020, 51(1): 317-322 CrossRef
  47. Cheng L., Sun Y.H. Polymorphisms in a myostatin gene and associations with growth in a hybrid of Culter alburnus and Ancherythroculter nigrocauda. Genetics and Molecular Research, 2015, 14(2): 5615-5620 CrossRef
  48. Peñaloza C., Hamilton A., Guy D., Bishop S., Houston R. A SNP in the 5′ flanking region of the myostatin-1b gene is associated with harvest traits in Atlantic salmon (Salmo salar). BMC Genetics, 2013, 14(1): 112 CrossRef
  49. Nazari S., Jafari V., Pourkazemi M., Miandare H.K., Abdolhay H.A. Association between myostatin gene (MSTN-1) polymorphism and growth traits in domesticated rainbow trout (Oncorhynchus mykiss). Agri Gene, 2016, 1(4): 109-115 CrossRef
  50. Liu L., Yu X., Tong J. Molecular characterization of myostatin (MSTN) gene and association analysis with growth traits in the bighead carp (Aristichthys nobilis). Molecular Biology Reports, 2012, 39(9): 9211-9221 CrossRef
  51. Sun Y., Li Q., Wang G. Polymorphisms in the Myostatin-1 gene and their association with growth traits in Ancherythroculter nigrocauda. Chinese Journal of Oceanology and Limnology, 2017, 35(3): 597-602 CrossRef
  52. Clemmons D.R. Use of mutagenesis to probe IGF-binding protein structure/function relationships. Endocr. Rev.,2001, 22(6): 800-817 CrossRef
  53. Chandhini S., Trumboo B., Jose S., Varghese T., Rajesh M., Kumar V. Insulin-like growth factor signalling and its significance as a biomarker in fish and shellfish research. Fish Physiology and Biochemistry, 2021, 47(4): 1011-1031 CrossRef
  54. Chu M.X., Jia Y., Wu Z., Huan H., Guo X., Yin S., Zhang K. Genome-wide characterization of three IGFs in hybrid yellow catfish (Pseudobagrus fulvidraco ½ Pseudobagrus vachellii ♂) and the association of IGF2 allelic variants with growth traits. Aquac. Rep., 2022, 26: 101315 CrossRef
  55. Jones J.I., Clemmons D.R. Insulin-like growth factors and their binding proteins: biological actions. Endocrine Reviews, 1995, 16(1): 3-34 CrossRef
  56. Codina M., Daniel G., Joan S., Núria M., Chistyakova O., Navarro I., Gutiérreza J. Metabolic and mitogenic effects of IGF-II in rainbow trout (Oncorhynchus mykiss) myocytes in culture and the role of IGF-II in the PI3K/Akt and MAPK signaling pathways. General and Comparative Endocrinology, 2008, 157(2): 116-124 CrossRef
  57. Tao W.J., Boulding E.G. Associations between single nucleotide polymorphisms in candidate genes and growth rate in Arctic charr (Salvelinus alpinus L.). Heredity, 2003, 91(1): 60-69 CrossRef
  58. Reindl K.M., Kittilson J.D., Bergan H.E., Sheridan M.A. Growth hormone-stimulated insulin-like growth factor-1 expression in rainbow trout (Oncorhynchus mykiss) hepatocytes is mediated by ERK, PI3K-AKT and JAK-STAT. American Journal of Physiology — Regulatory Integrative and Comparative Physiology, 2011, 301(1): R236-R243 CrossRef
  59. Chen T.T., Marsh A., Shamblott M., Chan K.-M., Tang Y.-L., Cheng C.M., Yang B.-Y. Structure and evolution of fish growth hormone and insulin-like growth factor genes. Fish Physiology, 1994, XIII: 179-209 CrossRef
  60. Morro B., Balseiro P., Albalat A., Pedrosa C., Mackenzie S., Nakamura S., Shimizu M., Nilsen T.O., Sveier H., Ebbesson L.O., Handeland S.O.  Effects of different photoperiod regimes on the smoltification and seawater adaptation of seawater-farmed rainbow trout (Oncorhynchus mykiss): insights from Na+,K+-ATPase activity and transcription of osmoregulation and growth regulation genes. Aquaculture, 2019, 507: 282-292 CrossRef
  61. Cui W., Takahashi E., Morro B., Balseiro P., Albalat A., Pedrosa C., Mackenzie S., Nilsen T.O., Sveier H., Ebbesson L.O. Changes in circulating insulin-like growth factor-1 and its binding proteins in yearling rainbow trout during spring under natural and manipulated photoperiods and their relationships with gill Na+,K+-ATPase and body size. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 2022, 268: 111205 CrossRef
  62. Yan J.J., Lee Y.C., Tsou Y.L., Tseng Y.C., Hwang P.P. Insulin-like growth factor 1 triggers salt secretion machinery in fish under acute salinity stress. Journal of Endocrinology, 2020, 246(3): 277-288 CrossRef
  63. Canosa L.F., Bertucci J.I. Nutrient regulation of somatic growth in teleost fish. The interaction between somatic growth, feeding and metabolism. Molecular and Cellular Endocrinology, 2020, 518: 111029 CrossRef
  64. Le Gac F., Loir M., Le Bail P.Y. Insulin-like growth factor I (IGF-I) mRNA and IGF-I receptor in trout testis and in isolated spermatogenic and Sertoli cells. Mol. Reprod. Dev., 1996, 44(1): 23-35 CrossRef
  65. Schmid A.C., Naf E., Kloas W., Reinecke M. Insulin-like growth factor-I and -II in the ovary of a bony fish, Oreochromis mossambicus, the tilapia: in situ hybridisation, immunohistochemical localisation, Northern blot and cDNA. Molecular and Cellular Endocrinology, 1999, 156(1-2): 141-149 CrossRef
  66. Reinecke M. Insulin-like growth factors and fish reproduction. Biology of Reproduction, 2010, 82(4): 656-661 CrossRef
  67. Shved N., Baroiller J.F., Eppler E. Further insights into the insulin-like growth factor-I system of bony fish pituitary with special emphasis on reproductive phases and social status. Annals of the New York Academy of Sciences, 2009, 1163: 517-520 CrossRef
  68. Fostier A., Le Gac F., Loir M. Insulin-like growth factors and gonadal regulation in fish. Contraception, Fetilite, Sexualite, 1994, 22(9): 548-550.
  69. Loir M., Le Gac F. Insulin-like growth factor-I and -II binding and action on DNA synthesis in rainbow trout spermatogonia and spermatocytes. Biology of Reproduction, 1994, 51(6): 1154-1163 CrossRef
  70. Chen T.T., Shamblott M., Jennkan L.V. Fish IGF-I and IGF-II: age-related and tissue-specific expression and transgenesis. Animal Cell Technology, Basic & Applied Aspects, 1994, 6: 127-135.
  71. Chauvigne F., Gabillard J.C., Weil C., Rescan P.Y. Effect of refeeding on IGFI, IGFII, IGF receptors, FGF2, FGF6, and myostatin mRNA expression in rainbow trout myotomal muscle. General and Comparative Endocrinology, 2003, 132(2): 209-215 CrossRef
  72. Biga P.R., Schelling G.T., Hardy R.W., Cain K.D., Overturf K, Ott T.L. The effects of recombinant bovine somatotropin (rbST) on tissue IGF-I, IGF-I receptor, and GH mRNA levels in rainbow trout, Oncorhynchus mykiss. General and Comparative Endocrinology, 2004, 135(3): 324-333 CrossRef
  73. Duan C., Plisetskaya E.M. Nutritional regulation of insulin-like growth factor-I mRNA expression in salmon tissues. Journal of Endocrinology, 1993, 139(2): 243-252 CrossRef
  74. Duguay S.J., Swanson P., Dickho V.W. Differential expression and hormonal regulation of alternatively spliced IGF-I mRNA transcripts in salmon. Journal of Molecular Endocrinology, 1994, 12(1): 25-37 CrossRef
  75. Vong Q.P., Chan K.M., Cheng C.H. Quantification of common carp (Cyprinus carpio) IGF-I and IGF-II mRNA by real-time PCR: differential regulation of expression by GH. Journal of Endocrinology, 2003, 178(3): 513-521 CrossRef
  76. Reinecke M., Schmid A., Ermatinger R., Loffing-Cueni D. Insulin-like growth factor I in the teleost Oreochromis mossambicus the tilapia: gene sequence, tissue expression, and cellular localization. Endocrinology, 1997, 138(9): 3613-3619 CrossRef
  77. Fenn C.M., Bledsoe J.W., Small B.C. Functional characterization of insulin-like growth factors in an ancestral fish species, the Shovelnose sturgeon Scaphirhynchus platorhynchus. Comparative Biochemistry and Physiology, 2016, 199: 21-27 CrossRef
  78. Rotwein P., Pollock K.M., Didier D.K., Krivi G.G. Organization and sequence of the human insulin-like growth factor I gene. J. Biol. Chem., 1986, 261(11): 4828-4832.
  79. Shimatsu A., Rotwein P. Mosaic evolution of the insulin-like growth factors. J. Biol. Chem., 1987, 262: 7894-7900.
  80. Chen M.H., Lin G., Gong, H., Weng C., Chang C., Wu J. The characterization of prepro-insulin-like growth factor-1 Ea-2 expression and insulin-like growth factor-1 genes (devoid 81 bp) in the zebrafish (Danio rerio). Gene, 2001, 268(1-2): 67-75 CrossRef
  81. Kavsan V.M., Grebenjuk V.A., Koval A.P., Skorokhod A.S., Roberts C.T.J., Leroith D. Isolation of a second nonallelic insulin-like growth factor I gene from the salmon genome. DNA and Cell Biology, 1994, 13(5): 555-559 CrossRef
  82. Tanaka M., Taniguchi T., Yamamoto I., Sakaguchi K., Yoshizato H., Ohkubo T., Nakashima K. Gene and cDNA structures of flounder insulin-like growth factor-I (IGF-I): multiple mRNA species encode a single short mature IGF-I. DNA and Cell Biology, 1998, 17(10): 859-868 CrossRef
  83. Amores A., Force A., Yan Y.L., Joly L., Amemiya C., Fritz A., Ho R.K., Langeland J., Prince V., Wang Y.L. Zebrafish hox clusters and vertebrate genome evolution. Science, 1998, 282(5394): 1711-1714 CrossRef
  84. Bailey G.S., Poulter R.T.M., Stockwell P.A. Gene duplication in tetraploid fish — model for gene silencing at unlinked duplicated loci. Proceedings of the National Academy of Sciences of the United States of America, 1978, 75(11): 5575-5579 CrossRef
  85. Wallis A.E., Devlin R.H. Duplicate insulin-like growth factor-I genes in salmon display alternative splicing pathways. Mol. Endocrinol., 1993, 7(3): 409-422 CrossRef
  86. Macqueen D.J., Johnston I.A. A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification. Proceedings of the Royal Society B, 2014, 281(1778): 20132881 CrossRef
  87. Allendorf F.W., Thogaard G.H. Tetraploidy and evolution of salmonids fishes. Evolutionary genetics of fishes /B.J. Turner (ed.). Plenum Publishing Corporation, New York, 1984.  
  88. Macqueen D.J., Johnston I.A. Evolution of follistatin in teleosts revealed through phylogenetic, genomic and expression analyses. Development Genes and Evolution, 2008, 218(1): 1-14 CrossRef
  89. Duan C., Duguay S.J., Swanson P., Dickhoff W.W., Plisetskaya E.M. Tissue-specific expression of insulin-like growth factor I mRNAs in salmonids: developmental, hormonal, and nutritional regulation. In: Perspective in comparative endocrinology. K.G. Davey, S.S. Tobe, D.E. Peter (eds.). National Research Council of Canada, Toronto, 1994: 365-372.
  90. Shamblott M.J., Cheng C.M., Bolt D., Chen T.T. Appearance of insulin-like growth factor mRNA in the liver and pyloric ceca of a teleost in response to exogenous growth hormone. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(15): 6943-6946 CrossRef
  91. Dong H., Zeng L., Duan D., Zhang H., Wang Y., Li W., Lin H. Growth hormone and two forms of insulin-like growth factors I in the giant grouper (Epinephelus lanceolatus): molecular cloning and characterization of tissue distribution. Fish Physiology and Biochemistry, 2010, 36(2): 201-212 CrossRef
  92. Amaral I.P.G., Johnston I.A. Insulin-like growth factor (IGF) signalling and genome-wide transcriptional regulation in fast muscle of zebrafish following a single-satiating meal. Journal of Experimental Biology, 2011, 214(13): 2125-2139 CrossRef
  93. Tsai H.Y., Hamilton A., Guy D.R., Houston R.D. Single nucleotide polymorphisms in the insulin-like growth factor 1 (IGF1) gene are associated with growth-related traits in farmed Atlantic salmon. Anim. Genet., 2014, 456: 709-715 CrossRef
  94. Li X.H., Bai J.J., Ye X., Hu Y.C., Li S.J., Yu L.Y. Polymorphisms in the 5' flanking region of the insulin-like growth factor I gene are associated with growth traits in largemouth bass Micropterus salmoides. Fish. Sci., 2009, 75: 351-358.
  95. Ge W., Davis M.E., Hines H.C., Irvin K.M., Simmen R.C.M. Association of a genetic marker with blood serum insulin-like growth factor-I concentration and growth traits in Angus cattle. Journal of Animal Science, 2001, 79(7): 1757-1762 CrossRef
  96. Li X., Bai J., Hu Y., Ye X., Li S., Yu L. Genotypes, haplotypes and diplotypes of IGF-II SNPs and their association with growth traits in largemouth bass (Micropterus salmoides). Molecular Biology Reports, 2012, 39(4): 4359-4365 CrossRef
  97. Feng X., Yu X., Tong J. Novel Single nucleotide polymorphisms of the insulin-like growth factor-i gene and their associations with growth traits in common carp (Cyprinus carpio L.). International Journal of Molecular Sciences, 2014, 15(12): 22471-22482 CrossRef
  98. Teng T., Zhao X., Li C., Guo J., Wang Y., Pan C., Ling Q. Cloning and expression of IGF-I, IGF-II, and GHR genes and the role of their single-nucleotide polymorphisms in the growth of pikeperch (Sander lucioperca). Aquaculture International, 2020, 28(4): 1547-1561 CrossRef
  99. Yu J., Chen X., Li J., Tang Y., Li H., Xu P., Dong Z. Isolation of IGF2 and association of IGF2 polymorphism with growth trait in genetically improved farmed tilapias, Oreochromis niloticus L. Aquaculture Research, 2010, 41(11): e743-e750 CrossRef
  100. Khatab S.A., Hemeda S.A., El-Nahas A.F., El Naby W.S. Genetic polymorphism in IGF-II gene and its relationship with growth rate in Tilapia nilotica. Alexandria Journal of Veterinary Sciences, 2014, 43(1): 26-32 CrossRef
  101. Fan S., Wang P., Zhao C., Yan L., Zhang B., Qiu L. Molecular cloning, screening of single nucleotide polymorphisms, and analysis of growth-associated traits of igf2 in spotted sea bass (Lateolabrax maculatus). Animals, 2023, 13(6): 982 CrossRef
  102. Gokcek O.E., Isik R., Karahan B., Gamsiz K. Genetic variation of insulin-like growth factor II (IGF-II) gene and its associations with growth traits in european sea bass (Dicentrarchus labrax). Turkish Journal of Fisheries and Aquatic Science, 2020, 20(7): 541-548 CrossRef
  103. Gokçek E.O., Isık R. Associations between genetic variants of the insulin-like growth factor I (IGF-I) gene and growth traits in European sea bass (Dicentrarchus labrax, L.). Fish Physiology and Biochemistry, 2020, 46(3): 1131-1138 CrossRef
  104. Johnsson J.I., Björnsson B.T. Growth hormone increases growth rate, appetite and dominance in juvenile rainbow trout, Oncorhynchus mykiss. Animal Behaviour, 1994, 48(1): 177-186 CrossRef
  105. Almuly R., Cavari B., Ferstman H., Kolodny O., Funkenstein B. Genomic structure and sequence of the gilthead seabream (Sparus aurata) growth hormone-encoding gene: identification of minisatellite polymorphism in intron I. Genome, 2000, 43(5): 836-845 CrossRef
  106. Devlin R.H., Yesaki T.Y., Donaldson E.M., Du S.J., Hew C.L. Production of germline transgenic Pacific salmonids with dramatically increased growth performance. Canadian Journal of Fisheries and Aquatic Sciences, 1995, 52(7): 1376-1384 CrossRef
  107. Cavari B., Funkenstein B., Chen T.T., Gonzalez-Villasenor L.I., Schartl M. Effect of growth hormone on the growth rate of the gilthead seabream (Sparus aurata), and use of different constructs for the production of transgenic fish. Aquaculture, 1993, 111: 189-197.
  108. Sakamoto T., McCormick S.D. Osmoregulatory actions of growth hormone and its mode of action in salmonids. Fish Physiology and Biochemistry, 1993, 11(1-6): 155-162 CrossRef
  109. Sakamoto T., Hirano T. Growth hormone receptors in the liver and osmoregulatory organs of rainbow trout: characterization and dynamics during adaptation to seawater. Journal of Endocrinology, 1991, 130(3): 425-433 CrossRef
  110. Bolton J.P., Collie N.L., Kawauchi H., Hirano T. Osmoregulatory actions of growth hormone in rainbow trout (Salmo gairdneri). Journal of Endocrinology, 1987, 112(1): 63-68 CrossRef
  111. Gomez J.M., Mourot B., Fostier A., Le Gac F. Growth hormone receptors in ovary and liver during gametogenesis in female rainbow trout (Oncorhynchus mykiss). J. Reprod. Fertil., 1999, 115(2): 275-285 CrossRef
  112. McLean E., Donaldson E.M., Teskeredzic E., Souza L.M. Growth enhancement following dietary delivery of recombinant porcine somatotropin to diploid and triploid of coho salmon (Oncorhynchus kisutch). Fish Physiology and Biochemistry, 1993, 11(1-6): 363-369 CrossRef
  113. Goodman H.M. Growth hormones and metabolism. In: The endocrinology of growth, development and metabolism in vertebrates. M.P. Schreibman, C.C. Scanes, P.K.T. Pang (eds.). Academic Press, San Diego, 1993: 93-115.
  114. Davidson M.B. Effect of growth hormone on carbohydrate and lipid metabolism. Endocrine reviews, 1987, 8(2): 115-131 CrossRef
  115. Vijayakumar A., Yakar S., Leroith D. The intricate role of growth hormone in metabolism. Frontiers in Endocrinology, 2011, 2: 32 CrossRef
  116. Calduch-Giner J.A., Sitja-Bobadilla A., Alvarez-Pellitero P., Perez-Sanchez J. Growth hormone as an in vitro phagocyte-activating factor in the gilthead seabream (Sparus aurata). Cell. Tiss. Res., 1997, 287(3): 535-540 CrossRef
  117. Yada T., Nagae M., Moriyama S., Azuma T. Effects of prolactin and growth hormone on plasma immunoglobulin M levels of hypophysectomized rainbow trout, Oncorhynchus mykiss. General and Comparative Endocrinology, 1999, 115(1): 46-52 CrossRef
  118. Bjornsson B.T. The biology of salmon growth hormone: from daylight to dominance. Fish Physiology Biochemistry, 1997, 17: 9-24 CrossRef
  119. Cao Q.P., Duguay S.J., Plisetskaya E., Steiner D.F., Chan S.J. Nucleotide sequence and growth hormone-regulated expression of salmon insulin-like growth factor-I mRNA. Molecular Endocrinology, 1989, 3(12): 2005-2010 CrossRef
  120. Sakamoto T., Hirano T., Madsen S.S., Nishioka R.S., Bern H.A. Insulin-like growth factor I gene expression during parr-smolt transformation of Coho salmon. Zoological Science, 1995, 12(2): 249-252 CrossRef
  121. Perrot V., Funkenstein B. Cellular distribution of insulin-like growth factor-II (IGF-II) mRNA and hormonal regulation of IGF-I and IGF-II mRNA expression in rainbow trout testis (Oncorhynchus mykiss). Fish Physiol. Biochem., 1999, 20: 219-229 CrossRef
  122. Bart H.L.Jr., Reneau P.C., Doosey M.H., Bell C.B. Evolutionary divergence of duplicate copies of the growth hormone gene in suckers (Actinopterygii: Catostomidae). International Journal of Molecular Sciences, 2010, 11(3): 1090-1102 CrossRef
  123. Ho W.K., Tsang W.H., Dias N.P. Cloning of the grass carp growth hormone cDNA. Biochemical and Biophysical Research Communications, 1989, 161(3): 1239-1243 CrossRef
  124. Hong Y., Schartl M. Sequence of the growth hormone (GH) gene from the silver carp (Hypophthalmichthys molitrix) and evolution of the GH genes in vertebrates. Biochimica et biophysica acta,1993, 1174(3): 285-288 CrossRef
  125. Chiou C.-S., Chen H.T., Chang W.C. The complete nucleotide sequence of the growth-hormone gene from the common carp (Cyprinus carpio). Biochimica et Biophysica Acta, Gene Structure and Expression, 1990, 1087(1): 91-94 CrossRef
  126. Rajesh R., Majumdar K.C. A comparative account of the structure of the growth hormone encoding gene and genetic interrelationship in six species of the genus Labeo. Fish Physiol. Biochem., 2007, 33(4): 311-333 CrossRef
  127. Tang Y., Lin C.M., Chen T.T., Kawauchi H., Dunham R.A., Powers D.A. Structure of channel cat fish (Ictalurus punctatus) growth hormone gene and its evolutionary implications. Molecular Marine Biology and Biotechnology, 1993, 2(4):198-206.
  128. Zhu C., Pan Z., Chang G., Wang H., Ding H., Wu N., Qiang X., Yu X., Wang L., Zhang J. Polymorphisms of the growth hormone gene and their association with growth traits and sex in Sarcocheilichthys sinensis. Molecular Genetics and Genomics, 2020, 295(6): 1477-1488 CrossRef
  129. De Noto F.M., Moore D.D., Goodman H.M. Human growth DNA sequence and mRNA structure: possible alternative splicing. Nucleic Acids Research, 1981, 9(15): 3719-3730 CrossRef
  130. Johansen B., Johnsen O.C., Valla S. The complete nucleotide sequence of the growth-hormone gene from Atlantic salmon (Sabno salar). Gene, 1989, 77(2): 317-324 CrossRef
  131. Agellon L.B., Davies S.L., Lin C.-M., Chen T.T., Powers D.A. Rainbow trout has two genes for growth hormone. Molecular Reproduction and Development, 1988, 1(1): 11-17 CrossRef
  132. Devlin R.H. Sequence of sockeye salmon type 1 and 2 growth hormone genes and the relationship of rainbow trout with Atlantic and Pacific salmon. Canadian Journal of Fisheries and Aquat. Sciences, 1993, 50(8): 1738-1748 CrossRef
  133. Ber R., Daniel V. Structure and sequence of the growth hormone-encoding gene from Tilapia nilotica. Gene, 1992, 113(2): 245-250 CrossRef
  134. Venkatesh B., Brenner S. Genomic structure and sequence of the pufferfish (Fugu rubripes) growth hormone-encoding gene: a comparative analysis of teleost growth hormone genes. Gene, 1997, 187(2): 211-215 CrossRef
  135. Ber R., Daniel V. Sequence analysis suggests a recent duplication of growth hormone encoding gene in Tilapia nilotica. Gene, 1993, 125(2): 143-150 CrossRef
  136. Law M.S., Cheng K.W., Fung T.Z., Chan Y.H., Yu K.L., Chan K.M. Isolation and characterization of two distinct growth hormone cDNAs from the goldfish, Carassius auratus. Archives of Biochemistry and Biophysics, 1996, 330(1): 19-23 CrossRef
  137. Du S.J., Devlin R.H., Hew C.L. Genomic structure of growth-hormone genes in Chinook salmon (Oncorhynchus tshawytscha) — presence of 2 functional genes, GH-I and GH-II, and a malespecific pseudogene, GH-Psi. DNA and Cell Biology, 1993, 12(8): 739-751 CrossRef
  138. Figueroa J., San Martín R., Flores C., Grothusen H., Kausel G. Seasonal modulation of growth hormone mRNA and protein levels in carp pituitary: evidence for two expressed genes. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2005, 175(3): 185-192 CrossRef
  139. Lorens J.B., Nerland A.H., Aasland R., Lossius I., Male R. Expression of growth hormone genes in Atlantic salmon. Journal of Molecular Endocrinology, 1993, 11(2): 167-179 CrossRef
  140. Chen T.T., Agellon L.B., Lin C.M., Tsai H.J., Zhang P., González-Villasénor L.I., Powers D.A. Evolutionary implications of two rainbow trout growth hormone genes. Fish Physiology and Biochemistry, 1989, 7(1-6): 381-385 CrossRef
  141. Yuan X., Lin Y., Qin J., Zhang Y., Yang G., Cai R., Liao Z., Sun C., Li W. Molecular identification, tissue distribution and in vitro functional analysis of growth hormone and its receptors in red-spotted grouper (Epinephelus akaara). Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 2020, 250: 110488 CrossRef
  142. Al-Azzawy M.A.N., Al-Khshali M.S. Relationship of growth hormone gene with some of productive traits of common carp Cyprinus carpio. Iraqi Journal of Agricultural Sciences, 2018, 49(6): 1011-1017 CrossRef
  143. Berenjkar N., Khalesi M.K., Rahimi Mianji G., Farhadi A. Association between growth hormone gene polymorphisms and growth traits in wild common carp, Cyprinus carpio from the Caspian Sea.  Iranian Journal of Fisheries Sciences, 2018, 17(3): 533-541 CrossRef
  144. Tian C., Yang M., Lv L., Yuan Y., Liang X., Guo W., Song Y., Zhao C. Single nucleotide polymorphisms in growth hormone gene and their association with growth traits in Siniperca  chuatsi (Basilewsky). Int. J. Mol. Sci., 2014, 15(4): 7029-7036 CrossRef
  145. Wang H., Sun J., Wang P., Lu X., Xu P., Gu Y., Li G. Polymorphism in growth hormone gene and its association with growth traits in Siniperca chuatsi. The Israeli Journal of Aquaculture - Bamidgeh, 2016, 68: 1-8 CrossRef
  146. Sun C., Sun H., Dong J. Correlation analysis of mandarin fish (Siniperca chuatsi) growth hormone gene polymorphisms and growth traits. Journal of Genetics, 2019, 98(2): 58.
  147. Ni J., You F., Xu J., Xu D., Wen A., Wu Z., Xu Y., Zhang P. Single nucleotide polymorphisms in intron 1 and intron 2 of Larimichthys crocea growth hormone gene are correlated with growth traits. Chinese Journal of Oceanology and Limnology, 2012, 30(2):  279-285 CrossRef
  148. Ni J., You F., Zhang P. J., Xu D. D., Xu Y.L. Primary study on PCR-SSCP analysis of the GH gene’s exons in Paralichthys olivaceus and its association with growth traits among a hatchery stock. Chinese High Technology Letters, 2006, 16: 307-312.
  149. Almuly R., Poleg-Danin Y., Gorshkov S., Gorshkova G., Rapoport B., Soller M., Kashi Y., Funkenstein B. Characterization of the 5' flanking region of the growth hormone gene of the marine teleost, gilthead sea bream Sparus aurata: analysis of a polymorphic microsatellite in the proximal promoter. Fisheries Science, 2005, 71: 479-490 CrossRef
  150. Tanamati F., Claudino da Silva S.C., Rodriguez M.D.P., Schuroff G.P., do Nascimento C.S., Del Vesco A.P., Gasparino E. GHR and IGF-I gene expression and production characteristics associated with GH gene polymorphism in Nile tilapia. Aquaculture, 2015, 435: 195-199 CrossRef
  151. Blanck D.V., Gasparino E., Ribeiro R.P., Marques D.S. Polimorfismo no gene GH1-PstI associado a características corporais de linhagens de tilápia-do-nilo. Pesqu. Agropec. Bras., 2009, 44(6): 599-604.
  152. Jaser S.K.K., Dias M.A.D., Lago A.A., Neto R.V.R., Hilsdorf A.W.S. Single nucleotide polymorphisms in the growth hormone gene of Oreochromis niloticus and their association with growth performance. Aquaculture Research, 2017, 48(12): 5835-5845 CrossRef
  153. Dias M.A., Neto R., Bueno-Filho J.S.S., Jaser S.K.K., Lago A.A., Hilsdorf A.W.S. Growth hormone gene polymorphism associated with grow-out performance of Oreochromis niloticus strains. Aquaculture, 2018, 503: 105-110 CrossRef
  154. Zhu T., Goh E.L.K., Graichen R., Ling L., Lobie P.E. Signal transduction via the growth hormone receptor. Cellular Signalling, 2001, 13(9): 599-616 CrossRef
  155. Kobayashi Y., Vandehaar M.J., Tucker H.A., Sharma B.K., Lucy M.C. Expression of growth hormone receptor 1A messenger ribonucleic acid in liver of dairy cows during lactation and after administration of recombinant bovine somatotropin. Journal of Dairy Science, 1999, 82(9): 1910-1916 CrossRef
  156. Nakao N., Higashimoto Y., Ohkubo T., Yoshizato H., Nakai N., Nakashima K., Tanaka M. Characterization of structure and expression of the growth hormone receptor gene of the Japanese flounder (Paralichtys olivaceus). Journal of Endocrinology, 2004, 182(1): 157-164 CrossRef
  157. Benedet S., Johansson V., Sweeney G., Galay-Burgos M., Bjornsson B.T. Cloning of two Atlantic salmon growth hormone receptor isoforms and in vitro ligand-binding response. Fish Physiology and Biochemistry, 2005, 31(4): 315-329 CrossRef
  158. Saera-Vila A., Calduch-Giner J.-A., Perez-Sanchez J. Duplication of growth hormone receptor (GHR) in fish genome: gene organization and transcriptional regulation of GHR type I and II in gilthead sea bream (Sparus aurata). General and Comparative Endocrinology, 2005, 142(1-2): 193-203 CrossRef
  159. Ozaki Y., Fukada H., Kazeto Y., Adachi S., Hara A., Yamauchi K. Molecular cloning and characterization of growth hormone receptor and its homologue in the Japanese eel (Anguilla japonica). Comparative Biochemistry and Physiology B—Biochemistry & Molecular Biology, 2006, 143(4): 422-431 CrossRef
  160. Jiang L.-S., Ruan Z.-H., Lu Z.-Q., Li Y.-F., Luo Y.-Y., Zhang X.-Q., Liu W.-S. Novel SNPs in the 3′UTR region of GHRb gene associated with growth traits in striped catfish (Pangasianodon hypophthalmus), a valuable aquaculture species. Fishes, 2022, 7: 230 CrossRef
  161. Liu S., Jia Y., Liu J., Zheng J., Chi M., Cheng S., Jiang W., Gu Z., Zhao J. Molecular characterization of two growth hormone receptor genes, and association analysis between microsatellite polymorphism and growth traits in the topmouth culter (Culter alburnus). Journal of Fisheries of China, 2020, 44(6): 894-906 CrossRef
  162. Chen B.-L., Xiao W., Zou Z.-Y., Zhu J.-L., LI D.-Y., Yu J., Yang H. Correlation analysis of polymorphisms in promoter region and coding region of GHR and IGF- genes with growth traits of two varieties of Nile tilapia (Oreochromis niloticus). Journal of Agricultural Biotechnology, 2020, 28(11): 2032-2047.  
  163. Zhao J.L., Si Y.F., He F., Wen H.S., Li J.F., Ren Y.Y., Chen S.L. Polymorphisms and DNA methylation level in the CpG site of the GHR1 gene associated with mRNA expression, growth traits and hormone level of half-smooth tongue sole (Cynoglossus semilaevis). Fish Physiology and Biochemistry, 2015, 41(4): 853-865 CrossRef
  164. Zinov’eva N., Gladyr’ E., Derzhavina G., Kunaeva E. Zhivotnovodstvo Rossii, 2006, 3: 39-31 (in Russ.).
  165. Vinogradova I.V., Kostyunina O.V., Sermyagin A.A., Kharzinova V.R., Zinov’eva N.A. Molochnoe i myasnoe skotovodstvo, 2018, 2: 8-11 (in Russ.).
  166. Deniskova T.E., Petrov S.N., Sermyagin A.A., Dosev A.V., Fornara M.S., Reyer H., Wimmers K., Bagirov V.A., Brem G., Zinovieva N.A. A search for genomic variants associated with body weight in sheep based on high density SNP genotypes analysis. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2021, 56(2): 279-291 CrossRef
  167. Korshunova L.G., Karapetyan R.V., Komarchev A.S., Kulikov E.I. Association of single nucleotide polymorphisms in candidate genes with economically useful traits in chickens (Gallus gallus domesticus L.) (review). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2023, 58(2): 205-222 CrossRef
  168. Mel’nikova E.E., Bardukov N.V., Fornara M.S., Kostyunina O.V., Sermyagin A.A., Brem G., Zinov’eva N.A. The study of effect of genotypes for DNA marker on reproductive qualities of sows of large white and landrace breeds. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2019, 54(2): 227-238 CrossRef
  169. Sedykh T.A., Gladyr’ E.A., Gusev I.V., Kharzinova V.R., Gizatullin R.S., Kalashnikova L.A. Zootekhniya, 2016, 9: 7-10 (in Russ.).

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)