PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2023.6.1006eng

UDC: 636.085

Supported financially by a grant from the Russian Science Foundation (project No. 22-16-00009)

 

MARINE ALGAE: EVALUATION OF THE POTENTIAL FOR USE IN FARM ANIMAL DIETS (review)

I.I. Kochish, E.E. Zimin, I.N. Nikonov

Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, 23, ul. Akademika Skryabina, Moscow, 109472 Russia, e-mail kochich.i@mail.ru, eug2.zimin@gmail.com, ilnikonov@mgavm.ru (✉ corresponding author)

ORCID:
Kochish I.I. orcid.org/0000-0002-8502-6052
Nikonov I.N. orcid.org/0000-0001-9495-0178
Zimin E.E. orcid.org/0009-0007-9244-7334

Final revision received April 04, 2023
Accepted April 22, 2023

Currently, in the feed industry, along with energy-saving progressive technologies, non-traditional raw materials and secondary products of food industry are widely used. Processing and use of non-traditional resources at food enterprises significantly increases their profitability and reduces grain costs in compound feeds (P. Burtin, 2003). Natural components provide high-quality feeding for animals, strengthen their health and improve production performance. Currently, studies of the biological activity of algae phlorotanins are still relevant. The variety of biological properties determines their practical use, including in the production of feed additives for animals (S.B. Wang et al., 2013). An important problem is the uncontrolled use of antibacterial drugs, which can lead to the transfer of antibiotic resistance from animal to human (I.I. Kochish et al., 2019). Probiotics, prebiotics, symbiotics, organic acids, etc., serve as an alternative to feed antibiotics. These supplements are not inferior to antibiotics in effectiveness, but exclude their negative effects (I.A. Egorov et al., 2019). Seaweeds have a prebiotic effect due to the oligo- and polysaccharides and antimicrobial, immunomodulatory, antioxidant and anti-inflammatory activity due to bioactive compounds. Depending on the purpose of application and with the optimal dosage, seaweeds can positively affect animal ontogenesis, productivity and the quality of the products obtained. In poultry farming, seaweeds strengthen the immune state, reduce the microbial load in the digestive tract and improve product quality (A.M. Abudabos et al., 2012). Green algae (Entermorpha prolifera) contribute to better digestibility of nutrients, increase the level of metabolized energy, lead to higher egg production and a better egg quality (an increase in weight, shell thickness, change in yolk color), as well as reduce the yolk cholesterol level (S.B. Wang et al., 2013). Dried, boiled and autoclaved brown algae (Sargassum dentifebium, Turbinaria conoides, Dictyota dentata, etc.) in the diet of young chickens and laying hens have no adverse effects on productivity performance and feed intake while positively influence yolk coloration and the calcium content in the shell. Dietary brown algae Sargassum sp. reduces levels of cholesterol and triglycerides in blood and yolk in laying hens with an increase in the yolk carotene, lutein and zeaxanthin concentrations (M.A. Al-Harthi et al., 2012). Red algae (Asparagopsis taxiformis) in the diet of animals can positively change the microbiome of the gastrointestinal tract, increasing the diversity and abundance of beneficial bacteria (B.M. Roque et al., 2019). Thus, due to its special biochemical composition, seaweeds is promising in feeding highly productive crosses of poultry, pigs and cattle.

Keywords: algae, antibiotic resistance, intestinal microflora, immunity, probiotics, prebiotics, Campylobacter, polysaccharides, biochemical analysis, feed additive.

 

REFERENCES

  1. Burtin P. Nutritional value of seaweeds. Electronic Journal of Environmental, Agricultural and Food Chemistry, 2003, 2(4): 498-503.
  2. Godfray H.C., Beddington J.R., Crute I.R., Haddad L., Lawrence D., Muir J.F., Pretty J., Robinson S., Thomas S.M., Toulmin C. Food security: the challenge of feeding 9 billion people. Science, 2010, 327(5967): 812-818 CrossRef
  3. Tilman D., Balzer C., Hill J., Befort B.L. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): 20260-20264 CrossRef
  4. Makkar H.P.S., Tran G., Heuze V., Guger-Reverdin S., Lessire M., Lebas F., Ankers P. Seaweeds for livestock diets: a review. Animal Feed Science and Technology, 2016, 212: 1-17 CrossRef
  5. Sleptsov V.V. Epokha nauki, 2017, 9: 96-101 (in Russ.).
  6. O’Sullivan L., Murphy B., McLoughlin P., Duggan P., Lawlor P.G., Hughes H., Gardiner G.E. Prebiotics from marine macroalgae for human and animal health applications. Marine Drugs, 2010, 8(7): 2038-2064 CrossRef
  7. Kolomiets S.N., Egorova M.A., Farzutdinov R.Kh. Zootekhniya, 2020, 5: 14-17 (in Russ.).
  8. Egorov I.A., Egorova T.A., Lenkova T.N., Vertiprakhov V.G., Manukyan V.A., Nikonov I.N., Grozina A.A., Filippova V.A., Yildirim E.A., Ilyina L.A., Dubrovin A.V., Laptev G.Yu. Poultry diets without antibiotics. ii. intestinal microbiota and performance of broiler (Gallus gallus L.) breeders fed diets with a phytobiotic. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2019, 54(4): 798-809 CrossRef
  9. Kim S.-K. Handbook of marine microalgae: biotechnology advances. K.A.S. Gomez, P. Gonzalez (eds.). Academic Press, UK, 2015.
  10. van Krimpen M.M., Bikker P., van der Meer I.M., van der Peet-Schwering C.M.C., Vereijken J.M. Cultivation, processing and nutritional aspects for pigs and poultry of European protein sources as alternatives for imported soybean products. In: Wageningen UR Livestock Research. No. 662. Wageningen UR Livestock Research, Netherlands, 2013.
  11. Kochish I.I., Myasnikova O.V., Martynov V.V. Materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Molekulyarno-geneticheskie tekhnologii dlya analiza ekspressii genov produktivnosti i ustoychivosti k zabolevaniyam zhivotnykh» [Proc. Int. Conf. «Molecular genetic technologies for analyzing the expression of genes for productivity and resistance to animal diseases», iss. 1]. Moscow, 2019, vyp. 1: 93-97 (in Russ.).
  12. Buyarov V.S. Chervonova I.V., Yarovan N.I., Uchasov D.S., Sein O.B. Probiotiki i prebiotiki v promyshlennom svinovodstve i ptitsevodstve: monografiya [Probiotics and prebiotics in industrial pig and poultry farming: monograph]. Orel, 2014 (in Russ.).
  13. Dubrovin A.V. Laptev G.Yu., Il’ina A.A., Filippova V.A., Yyldyrym E.A., Kochish I.I., Novikova O.B. Veterinariya, 2018, 12: 12-16 (in Russ.).
  14. Kotarev V.I. Lyadova L.V., Morgunova V.I., Denisenko L.I. Veterinarnyy farmakologicheskiy vestnik, 2019, 3(8): 85-94 CrossRef (in Russ.).
  15. Torshkov A.A., Fomichev Yu.P. Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta, 2010, 25(1): 172-175 (in Russ.).
  16. Świątkiewicz S., Arczewska-Włosek A., Józefiak D. Application of microalgae biomass in poultry nutrition. World’s Poultry Science Journal, 2016, 71(4): 663-672 CrossRef
  17. Windisch W.M., Rohrer E., Schedle K. Phytogenic feed additives to young piglets and poultry: mechanisms and application. In: Phytogenics in animal nutrition: natural concepts to optimize gut health and performance. T. Steiner (ed.). Nottingham, 2009: 19-38.
  18. Garcia-Vaquero M., Rajauria G., O’Doherty J.V., Sweeney T. Polysaccharides from macroalgae: recent advances, innovative technologies and challenges in extraction and purification. Food Research International, 2017, 99(3): 1011-1020 CrossRef
  19. Renuka N., Prasanna R., Sood A., Ahluwalia A.S., Bansal R., Babu S., Singh R., Shivay Y.S., Nain L. Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat. Environmental Science and Pollution research International, 2015, 23(7): 6608-6620 CrossRef
  20. Saha D., Bhattacharya S. Hydrocolloids as thickening and gelling agents in food: a critical review. Journal of Food Science and Technology, 2010, 47(6): 587-597 CrossRef
  21. Schneider T., Ehrig K., Liewert I., Alban S. Interference with the CXCL12/CXCR4 axis as potential antitumor strategy: superiority of a sulfated galactofucan from the brown alga Saccharina latissima and fucoidan over heparins. Glycobiology, 2015, 25(8): 812-24 CrossRef
  22. Audibert L., Fauchon M., Blanc N., Hauchard D., Gall E.A. Phenolic compounds in the brown seaweed Ascophyllum nodosum: distribution and radical-scavenging activities. Phytochemical Analysis, 2010, 21(5): 399-405 CrossRef
  23. Bittkau K.S., Neupane S., Alban S. Initial evaluation of six different brown algae species as source for crude bioactive fucoidans. Algal Research, 2020, 45: 101759 CrossRef
  24. Devaney L., Henchion M., Regan Á. Good governance in the bioeconomy. EuroChoices, 2017, 16(2): 41-46 CrossRef
  25. Atashrazm F., Lowenthal R.M., Woods G.M., Holloway A.F., Dickinson J.L. Fucoidan and cancer: a multifunctional molecule with anti-tumor potential. Marine Drugs, 2015, 13(4): 2327-46 CrossRef
  26. Jr. Goh L.P., Loh S.P., Fatimah M.Y., Perumal K. Bioaccessibility of carotenoids and tocopherols in marine microalgae, Nannochloropsis sp. and Chaetoceros sp. Malaysian Journal of Nutrition, 2009, 15(1): 77-86.
  27. Heffernan N., Brunton N.P., FitzGerald R.J., Smyth T.J. Profiling of the molecular weight and structural isomer abundance of macroalgae-derived phlorotannins. Marine Drugs, 2015, 13(1): 509-528 CrossRef
  28. Heffernan N., Smyth T.J., Soler-Villa A., Fitzgerald R.J., Brunton N.P. Phenolic content and antioxidant activity of fractions obtained from selected Irish macroalgae species (Laminaria digitata, Fucus serratus, Gracilaria gracilis and Codium fragile). Journal of Applied Phycology, 2015, 27(1): 519-530 CrossRef
  29. Kılınç B., Cirik S., Turan G., Tekogul H., Koru E. Seaweeds for food and industrial applications. In: Food industry. I. Muzzalupo (eds.). InTech, 2012 CrossRef
  30. Liu H., Gu L. Phlorotannins from brown algae (Fucus vesiculosus) inhibited the formation of advanced glycation end products by scavenging reactive carbonyls. Journal of Agricultural and Food Chemistry, 2012, 60(5): 1326-34 CrossRef
  31. Nakamura T., Nagayama K., Uchida K., Tanaka R. Antioxidant activity of phlorotannins isolated from brown alga Eisenia bicyclis. Fisheries Science, 1996, 62(6): 923-926 CrossRef
  32. Pozharitskaya O.N., Obluchinskaya E.D., Shikov A.N. Mechanisms of bioactivities of Fucoidan from the brown seaweed Fucus vesiculosus L. of the Barents Sea. Marine Drugs, 2020, 18(5): 275CrossRef
  33. Ragan M.A., Jensen A. Quantitative studies on brown algal phenols. II. Seasonal variation in polyphenol content of Ascophyllum nodosum (L.) Le Jol. and Fucus vesiculosus (L.). Journal of Experimental Marine Biology and Ecology, 1987, 34(3): 245-258 CrossRef
  34. Puspita M., Deniel M., Widowati I., Radjasa O.K., Douzenel P., Marty C., Vandanjon L., Bedoux G., Bourgougnon N. Total phenolic content and biological activities of enzymatic extracts from Sargassum muticum (Yendo) Fensholt. Journal of Applied Phycology, 2017, 29(5): 2521-2537 CrossRef
  35. El Gamal A.A. Biological importance of marine algae. Saudi Pharmaceutical Jorunal, 2010, 18(1): 1-25 CrossRef
  36. Hayes M. Food proteins and bioactive peptides: new and novel sources, characterisation strategies and applications. Foods, 2018, 7(3): 38 CrossRef
  37. Yip Z.T., Quek R.Z.B., Huang D. Historical biogeography of the widespread macroalga Sargassum (Fucales, Phaeophyceae). J. Phycol., 2020, 56(2): 300-309 CrossRef
  38. Murty U.S., Banerjee A.K. Seaweed: the wealth of oceans. In: Handbook of marine macroalgae: biotechnology and applied phycology. S.-K. Kim (ed.). Cambridge, 2012: 36-43 CrossRef
  39. Edwards M., Hanniffy D., Heesch S., Hernández-Kantún J., Moniz M., Queguineur B., Ratcliff J., Soler-Vila A., Wan A. Macroalgae fact-sheets. A. Soler-Vila, M. Moniz (eds.). Irish Seaweed Research Group, Ryan Institute, NUI Galway, 2012.
  40. Misurcova L. Chemical composition of seaweeds. In: Handbook of marine macroalgae: biotechnology and applied phycology. S.-K. Kim (ed.). John Wiley & Sons, Ltd., 2012 CrossRef
  41. Corino C., Modina S.C., Giancamillo A.D., Chiapparini S., Rossi R. Seaweeds in pig nutrition. Animals, 2019, 9(12): 1126 CrossRef
  42. Azenha I. Cultivo e Avaliação Nutricional de Ulva sp. Comparação com Exemplares Recolhidos em Ambiente Natural. Bachelor’s Thesis Escola Superior Agrária de Coimbra. Coimbra, Portugal, 2019.
  43. Evans F.D., Critchley A.T. Seaweeds for animal production use. Journal of Applied Phycology, 2013, 26(2): 891-899 CrossRef
  44. Spruijt J., van der Weide R., van Krimpen M. Opportunities for microalgae as ingredient in animal diets. In: Application Centre for Renewable Resource. R. van der Weide (ed.). Wageningen UR, Netherlands, 2016.
  45. Abudabos A.M. Okab A., Aljumaah R.S., Samara E.M., Abdoun K.A., Al-Haidar A.A. Nutritional value of greenseaweed (Ulva lactuca) for broiler chickens. Italian Journal of Animal Science, 2012, 12(2): 177-181 CrossRef
  46. Wang S.B., Shi X.P., Zhou C.F., Lin Y.T. Enteromorpha prolifera: effects on performance, carcass quality and small intestinal digestive enzyme activities of broilers. Chinese Journal of Animal Nutrition, 2013, 25(6): 1332-1337.
  47. Wang S.B., Jia Y.H., Wang F.H., Lin Y.T. Enteromorpha prolifera supplemental level: effects on laying performance, egg quality, immune function and microflora in feces of laying hens. Chinese Journal of Animal Nutrition, 2013, 25(6): 1346-1352.
  48. Bradbury E.J. Wilkinson S.J., Cronin G.M., Walk C., Cowieson A. The effect of marine calcium source on broiler leg integrity. In: Australian poultry science symposium. E.J. Bradbury (ed.). Poultry Research Foundation, Australia, 2012, 23: 85-88.
  49. Al-Harthi M.A. Sexual maturity and performance of pullets fed different preparations and concentrations of brown marine algae (Sargassum dentifebium) in pre-laying and early laying periods. Italian Journal of Animal Science, 2014, 13(1): 3102 CrossRef
  50. Al-Harthi M.A., El-Deek A.A. The effects of preparing methods and enzyme supplementation on the utilization of brown marine algae (Sargassum dentifebium) meal in the diet of laying hens. Italian Journal of Animal Science, 2011, 10(48): 195-203 CrossRef
  51. Al-Harthi M.A., El-Deek A.A. Effect of different dietary concentrations of brown marine algae (Sargassum dentifebium) prepared by different methods on plasma and yolk lipid profiles, yolk total carotene and lutein plus zeaxanthin of laying hens. Italian Journal of Animal Science, 2012, 11(4): 347-353 CrossRef
  52. El-Deek A.A., Al-Harthi M.A., Abdalla A.A., Elbanoby M.M. The use of brown algae meal in finisher broiler diets. Egypt Poultry Science Journal, 2011, 31(IV): 767-781.
  53. Kulshreshtha G., Rathgeber B., Stratton G., Thomas N., Evans F., Critchley A., Hafting J., Prithiviraj B. Feed supplementation with red seaweeds, Chondus crispus and Sarcodiotheca gaudichaudii, affects performance, egg quality, and gut microbiota of layer hens. Poultry Science, 2014, 93(12): 2991-3001 CrossRef
  54. Kulshreshtha G., Rathgeber B., Maclsaac J., Boulianne M., Brigitte L., Stratton G., Thomas N.A., Critchley A.T., Hafting J., Prithiviraj B. Feed supplementation with red seaweeds, Chondrus crispus and Sarcodiotheca gaudichaudii, reduce Salmonella enteritidis in laying hens. Frontiers in Microbiology, 2017, 8: 567 CrossRef
  55. Ngo D.-H., Kim S.-K. Sulfated polysaccharides as bioactive agents from marine algae. International Journal of Biological Macromolecules, 2013, 62: 70-75 CrossRef
  56. Mariey Y.A., Samak H., Ibrahem M. Effect of using Spirulina platensis algae as feed additive for poultry diets. Egyptian Poultry Science Journal, 2012, 32(1): 201-215.
  57. Kulshreshtha G., Borza T., Rathgeber B., Stratton G.S., Thomas N.A., Crithley A., Hafting J., Prithiviraj B. Red seaweeds Sarcodiotheca gaudichaudii and Chondrus crispus down regulate virulence factors of Salmonella enteritidis and induce immune responses in Caenorhabditis elegans. Frontiers in Microbiology, 2016, 7: 1-12 CrossRef
  58. Manor M.L., Derksen T.J., Magnuson A.D., Raza F., Lei X.G. Inclusion of dietary defatted microalgae dose-dependently enriches ω-3 fatty acids in egg yolk and tissues of laying hens. The Journal of Nutrition, 2019, 149(6): 942-950 CrossRef
  59. Sweeney T., Meredith H., Vigors S., McDonnell M.J., Ryan M., Thornton K., O’Doherty J.V. Extract of laminarin and laminarin/fucoidan from the marine macroalgal species Laminaria digitata improved growth rate and intestinal structure in young chicks, but does not influence Campylobacter jejuni collonisation. Animal Feed Science and Technology, 2017, 232(4): 71-79 CrossRef
  60. Erickson P.S., Marston S.P., Gemmel M., Deming J., Cabral R.G., Murphy M.R., Marden J.I. Short communication: kelp taste preferences by dairy calves. Journal of Dairy Science, 2012, 95(2): 856-858 CrossRef
  61. Bach S.J., Wang Y., Mcallister T.A. Effect of feeding sun-dried seaweed (Ascophyllum nodosum) on fecal shedding of Escherichia coli O157:H7 by feedlot cattle and on growth performance of lambs. Animal Feed Science and Technology, 2008, 142(1-2): 17-32 CrossRef
  62. Lopez C.C., Serio A., Rossi C., Mazzarrino G., Marchetti S., Castellani F., Grotta L., Fiorentino F.P., Paparella A., Martino G. Effect of diet supplementation with Ascophyllum nodosum on cow milk composition and microbiota. Journal of Dairy Science, 2016, 99(8): 6285-6297 CrossRef
  63. Konovalov A.V., Flerova E.A., Zarubin A.V., Bogdanova A.A. Vestnik APK Verkhnevolzh’ya, 2012, 1(17): 46-49 (in Russ.).
  64. Garcés C.N., Vela D., Mullo A., Cabezas V., Alvear A., Ponce C. Spirulina supplementation during the transition period by grazing dairy cattle at tropical highland conditions. Tropical Animal Health and Production, 2019, 51(2): 477-480 CrossRef
  65. Petryakov V.V. Nauchnyy al’manakh, 2016, 6-2(19): 442-445 (in Russ.).
  66. Mekhanikova M.V., Tret’yakov E.A., Kulakova T.S. Molochnokhozyaystvennyy vestnik, 2016, 1(21): 35-42 (in Russ.).
  67. Roque B.M., Brooke C.G., Ladau J., Polley T., Marsh L.J., Najafi N., Pandey P., Singh L., Kinley R., Salwen J.R., Eloe-Fadrosh E., Kebreab E., Hess M. Effect of the macroalgae Asparagopsis taxiformis on methane production and rumen microbiome assemblage. Animal Microbiome, 2019, 1: 3 CrossRef
  68. Maghin F., Ratti S., Corino C. Biological functions and health promoting effects of brown seaweeds in swine nutrition. Journal of Dairy, Veterinary & Animal Research, 2014, 1(1): 14-16 CrossRef
  69. Wan J., Jiang F., Xu Q., Chen D., He J. Alginic acid oligosaccharide accelerates weaned pig growth through regulating antioxidant capacity, immunity and intestinal development. RSC Advances, 2016, 90: 87026-87035 CrossRef
  70. Choi Y., Hosseindoust A., Goel A., Lee S., Jha P.K., Kwon I.K., Chae B.-J. Effects of Ecklonia cava as fucoidan-rich algae on growth performance, nutrient digestibility, intestinal morphology and caecal microflora in weanling pigs. Asian-Australasian Journal of Animal Sciences, 2017, 30(1): 64-70 CrossRef
  71. Dell’Anno M., Sotira S., Rebucci R., Reggi S., Castinglioni B., Rossi L. In vitro evaluation of antimicrobial and antioxidant activities of algal extracts. Italian Journal of Animal Science,2020, 19(1): 103-113 CrossRef
  72. Azizi A.F.N., Miyazaki R., Yumito T., Ohashi Y., Uno S., Miyajima U., Kumamoto M., Uchiyama S., Yasuda M. Effect of maternal supplementation with seaweed powder on immune status of liver and lymphoid organs of piglets. The Journal of Veterinary Medical Science, 2018, 80(1): 8-12 CrossRef
  73. Nedeva R., Jordanova G., Kistanova E., Shumkov K., Georgiev B., Abadgieva D., Kacheva D., Shimkus A., Shimkine A. Effect of the addition of Spirulina platensis on the productivity and some blood parameters on growing pigs. Bulgarian Journal of Agricultural Science, 2014, 20(3): 680-684.
  74. McDonnell P., Figat S., O’Doherty J.V. The effect of dietary laminarin and fucoidan in the diet of the weanling piglet on performance, selected faecal microbial populations and volatile fatty acid concentrations. Animal, 2010, 4(4): 579-585 CrossRef
  75. Derek N., Ovyn A., De Smet S. In vitro assessment of the effect of intact marine brown macro-algae Ascophyllum nodosum on the gut flora of piglets. Livestock Science, 2010, 133(1-3): 154-156 CrossRef
  76. Katayama M., Fukuda T., Okamura T., Suzuki E., Tamura K., Shimizu Y., Suda Y., Suzuki K. Effect of dietary addition of seaweed and licorice on the immune performance of pigs. Animal Science Journal, 2011, 82(2): 274-281 CrossRef
  77. Panin A.N., Komarov A.A., Kulikovskiy A.V., Makarov D.A. Veterinariya i zootekhniya,2017, 5: 18-24 (in Russ.).
  78. Vsemirnaya organizatsiya zdorov’ya zhivotnykh. Kodeks zdorov’ya nazemnykh zhivotnykh, 28 izdanie. Rue de Prony, Paris, 2019 (in Russ.).
  79. Centers for Disease Control and Prevention (U.S.). Antibiotic resistance threats in the United States, 2013 (2013). Available: https://stacks.cdc.gov/view/cdc/20705. No date.
  80. Korotkevich Yu.V., Efimochkina N.R., Sheveleva S.A. Materialy 2-y Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Sovremennye tekhnologii produktov pitaniya» [Proc. 2 Int. Conf. «Modern food technologies»]. Kursk,2015, 78-81 (in Russ.).
  81. European Food Safety Authority (EFSA). The European Union summary report on trends and sources of zoonoses, zoonotic agents and foodborne outbreaks in 2013. European Food Safety Authority Journal,2015, 13(1): 3991 CrossRef
  82. Meunier M., Guyard-Nicodeme M., Dory D., Chemaly M. Control strategies against Campylobacter at the poultry production level: biosecurity measures, feed additives and vaccination. Journal of Applied Microbiology, 2016, 120(5): 1139-1173 CrossRef
  83. Efimochkina N.R., Korotkevich Yu.V., Stetsenko V.V., Pichugina T.V., Bykova I.V., Markova Yu.M., Minaeva L.P., Sheveleva S.A. Voprosy pitaniya, 2017, 86(1): 17-27 CrossRef (in Russ.).
  84. Sukhinin A.A., Rozhdestvenskaya T.N., Pankratov S.V., Smirnova L.I., Makavchik S.A. Veterinariya i kormlenie, 2021, 3: 52-54 (in Russ.).
  85. Cumashi A., Ushakova N.A., Preobrazhenskaya M.E., D’Incecco A., Piccoli A., Totani L., Tinari N., Morozevich G.E., Berman A.E., Bilan M.I.,  Usov A.I., Ustyuzhanina N.E., Grachev A.A., Sanderson C.J., Kelly M., Rabinovich G.A., Lacobelli S. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology, 2007, 17(5): 541-552 CrossRef
  86. Morua V.K., Kim J., Kim E.-K. Algal fucoidan: structural and size-dependent bioactivities and their perspectives. Applied Microbiology and Biotechnology, 2012, 93(1): 71-82 CrossRef
  87. Zinov’ev E.V., Luk’yanov S.A., Tsygan V.N., Kul’minskaya A.A., Lapina I.M., Zhurishkina E.V., Lopatin I.M., Asadulaev M.S., Artsimovich I.V., Kostyakov D.V., Paneyakh M.B., Shabunin A.S., Zubov V.V., Zhilin A.A., Davletova L.A., Stekol’shchikova E.A. Vestnik Rossiyskoy voenno-meditsinskoy akademii,2019, 1(65): 148-152 (in Russ.).
  88. Potoroko I.Yu., Uskova D.G., Paymulina A.V., Bagale U. Vestnik Yuzhno-Ural’skogo gosudarstvennogo universiteta. Seriya: Pishchevye i Biotekhnologii,2019, 7(1): 58-70 CrossRef (in Russ.).
  89. Bogolitsyn K.G., Kaplitsin P.A., Pochtovalova A.S. Amino-acid composition of arctic brown algae. Chemistry of Natural Compounds, 2014, 49(6): 1110-1113 CrossRef
  90. Shibata T., Ishimaru K., Kawaguchi S., Yoshikawa H., Hama Y. Antioxidant activities of phlorotannins isolated from Japanese Laminariaceae. Journal of Applied Phycology, 2007, 20(5): 705-711 CrossRef
  91. Ryu Y.B., Jeong H.J., Yoon S.Y., Park J.Y., Kim Y.M., Park S.J., Rho M.C., Kim S.J., Lee W.S. Influenza virus neuraminidase inhibitory activity of phlorotannins from the edible brown alga Ecklonia cava. Journal of Agricultural and Food Chemistry, 2011, 59(12): 6467-6473 CrossRef
  92. Lezcano V., Fernández C., Parodi E.R., Morelli S. Antitumor and antioxidant activity of the freshwater macroalga Cladophora surera. Journal of Applied Phycology, 2018, 30(5): 2913-2921 CrossRef
  93. Kojima-Yuasa A. Biological and pharmacological effects of polyphenolic compounds from Ecklonia cava. In: Polyphenols: mechanisms of action in human health and disease. R.R. Watson, V.R. Preedy, S. Zibadi (eds.). Academic Press, London, 2018: 41-52 CrossRef
  94. Lee M.H., Lee K.B., Oh S.M., Lee B.H., Chee H.Y. Antifungal activities of dieckol isolated from the marine brown alga Ecklonia cava against Trichophyton rubrum. Journal of the Korean Society for Applied Biological Chemistry,2010, 53(4): 504-507 CrossRef
  95. Kim H.-J., Dasagrandhi C., Kim S.-H., Kim B.-G, Eom S.-H., Kim Y.-M. In vitro antibacterial activity of phlorotannins from edible brown algae, Eisenia bicyclis against streptomycin-resistant Listeria monocytogenes. Indian Journal of Microbiology, 2018, 58(1): 105-108 CrossRef
  96. Barbosa M., Lopes G., Valentão P., Ferreres F., Gil-Izquierdo Á., Pereira D.M., Andrade P.B. Edible seaweeds’ phlorotannins in allergy: a natural multi-target approach. Food Chemistry, 2018, 265:233-241 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)