PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2023.6.990eng

UDC: 632.95:502.75:632.15

 

LIPOPHILIC PROPERTIES OF PESTICIDES: BIOACCUMULATION AND BIOMAGNIFICATION IN ANIMALS, THE TOXICITY FORECASTING (review)

L.K. Kish1, O.I. Lavrukhina1, A.V. Tretyakov1, D.A. Makarov1,
I.N. Nikonov2 , I.I. Kochish2

1The Russian State Center for Animal Feed and Drug Standardization and Quality, 5, Zvenigorodskoye sh., Moscow, 123022 Russia, e-mail kanc@vgnki.ru, hamsster@mail.ru, tretyakov81@gmail.com, phorez@yandex.ru;
2Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, 23, ul. Akademika Skryabina, Moscow, 109472 Russia, e-mail ilnikonov@mgavm.ru (✉ corresponding author), kochish.i@mail.ru

ORCID:
Kish L.K. orcid.org/0000-0002-3814-7134
Makarov D.A. orcid.org/0000-0003-3834-0695
Lavrukhina O.I. orcid.org/0000-0001-6248-5726
Nikonov I.N. orcid.org/0000-0001-9495-0178
Tretyakov A.V. orcid.org/0000-0002-4984-9502
Kochish I.I. orcid.org/0000-0002-8502-6052

Final revision received September 22, 2023
Accepted Ocrober 18, 2023

The problem of pesticides contamination save actuality because of the growing demand for food and multi-factorial processes of their biotransformation and bioaccumulation in living organisms. As of July 11, 2023, more than 1,200 approved insecticides, acaricides and herbicides have been registered in Russian Federation (excluding fungicides, rodenticides, repellents, desiccants, plant growth regulators, microbiological and biological pesticides, etc.), many of them are included in the list of particularly dangerous according to PAN data, for example, diazinon, chlorpyrifos, dimethoate, imidacloprid, malathion, spinosad (PAN List of HHPs, 2021). Their uncontrolled using results the accumulation of parent compounds, metabolites and degradation products in soil, water, plants, and animals and the subsequent biomagnification of persistent pollutants at higher trophic levels (V.P. Kalyabina et al., 2021; C.M. Volschenk et al., 2019; Z. Zhang et al., 2019). Pesticides have an adverse effect not only for target pests, but also on the crops, soil microbiota, natural ecosystems objects and humans. Biopesticides are safer, but at the same time, their high selectivity becomes a disadvantage in solving several agrotechnical objectives (W.-H. Leong et al., 2020; De O.H. Gomes et al., 2020). The absorption, distribution, and transport of pesticides in biological systems are determined by their lipophilicity (T. Chmiel et al., 2019; R. Beiras, 2018; S.-K. Kim et al., 2019). High lipophilicity generates conditions for high metabolic clearance of compounds. The biological activity of substances in the organism could be predicted by logP which describes their affinity for target proteins (T. Chmiel et al., 2019), where P is the distribution coefficient showing the ratio of the compound concentrations in two immiscible phases at equilibrium state. The extremely lipophilicity of pesticides (logP > 5) can result to their binding to hydrophobic targets, which provides non-selectivity and higher toxicity (C. Olisah et al., 2021). Insufficient data has been obtained on the metabolism and bioaccumulation of pesticides in farm animals and synergistic effects in real conditions by this time. The distribution of pesticides in soil, ground and surface waters depends not only on their lipophilicity, but on pH, temperature, the initial amounts of preparations, organic and inorganic substances content, solids sorption properties (S.D. Burlaka et al., 2019; S. Hintze et al., 2021; F.A.P.C. Gobas et al., 2018). The accumulation of pesticides in the soil results the decreasing of the involved in the circulation of elements and organic substances degradation soil microorganism activity and can be the biological indicator of ecosystems pollution. Generally, the levels of pesticide residues in environment are measured by gas, high-performance and ultra-high-performance liquid chromatography, enzyme immunoassay and capillary electrophoresis (A. Samsidar et al., 2018; S. Hintze et al., 2021; L. Fu et al., 2018). Gas chromatography is appropriate for volatile and thermally stable compounds, while high-performance liquid chromatography is more relevant for non-volatile and polar compounds. A combination of chromatographic separation with high-resolution mass spectrometry could be required for non-targeted analysis that allows the not detected in the target study compounds identification and determination. The search for safe plant protection substances and forecasting of their toxicity, bioaccumulation processes in environment and the transfer through food chains, is possible using a combination of two approaches. These are «non-targeted search» and modern QSAR mathematical models. The «non-targeted search» allows both targeted and non-targeted analysis of pesticides and their metabolites, and QSAR models are based on the correlation of physicochemical, particularly lipophilic properties of molecules and their effects on living organisms (A. Speck-Planche, 2020; N.A. Ilyushina, 2019; O.G. Columbin, 2020).

Keywords: pesticides, lipophilicity, bioaccumulation, environmental pollution, toxicity, microbiome.

 

REFERENCES

  1. Global’nye voprosy povestki dnya. Narodonaselenie [Global issues on the agenda. Population]. Available: https://www.un.org/ru/global-issues/population. Accessed: 04/15/2022 (in Russ.).
  2. Samsidar A., Siddiquee S., Md Shaarani S. A review of extraction, analytical and advanced methods for determination of pesticides in environment and foodstuffs. Trends in Food Science & Technology, 2018, 71: 188-201 CrossRef
  3. Emirova D.E. Uchenye zapiski Krymskogo inzhenerno-pedagogicheskogo universiteta. Seriya: Biologicheskie nauki, 2019, 1: 20-25 (in Russ.).
  4. Polyak Yu.M., Sukharevich V.I. Agrokhimiya, 2020, 3: 83-93 (in Russ.).
  5. Garlito B., Ibáñez M., Portolés T., Serrano R., Amlund H., Lundebye A.K., Sanden M., Berntssen M.H.G, Hernández F. LC-MS/MS method for the determination of organophosphorus pesticides and their metabolites in salmon and zebrafish fed with plant-based feed ingredients. Analytical and Bioanalytical Chemistry, 2019, 411(27): 7281-7291 CrossRef
  6. Mahugija J.A.M., Chibura P.E., Lugwisha E.H.J. Residues of pesticides and metabolites in chicken kidney, liver and muscle samples from poultry farms in Dar es Salaam and Pwani, Tanzania. Chemosphere, 2018, 193: 869-874 CrossRef
  7. Hou K., Yang Y., Zhu L., Wu R., Du Z., Li B., Zhu L., Sun S. Toxicity evaluation of chlorpyrifos and its main metabolite 3,5,6-trichloro-2-pyridinol (TCP) to Eisenia fetida in different soils. Comparative Biochemistry and Physiology — Part C: Toxicology & Pharmacology, 2022, 259: 109394 CrossRef
  8. El-Nahhal Y., Lubbad R. Acute and single repeated dose effects of low concentrations of chlorpyrifos, diuron, and their combination on chicken. Environmental Science and Pollution Research International, 2018, 25(11): 10837-10847 CrossRef
  9. Budnikova N.V., Mitrofanov D.V. Sbornik nauchnykh trudov Krasnodarskogo nauchnogo tsentra po zootekhnii i veterinarii, 2020, 9(1): 274-277 (in Russ.).
  10. Kalinnikova T.B., Gatiyatullina A.F., Egorova A.V. Rossiyskiy zhurnal prikladnoy ekologii, 2021, 3(27): 50-57 (in Russ.).
  11. Rogozin M.Yu., Beketova E.A. Molodoy uchenyy, 2018, 25(211): 39-43 (in Russ.).
  12. Wang Y., Zhu Y.C., Li W. Comparative examination on synergistic toxicities of chlorpyrifos, acephate, or tetraconazole mixed with pyrethroid insecticides to honey bees (Apis mellifera L.). Environmental Science and Pollution Research, 2020, 27(7): 6971-6980 CrossRef
  13. Kasiotis K.M., Zafeiraki E., Kapaxidi E., Manea-Karga E., Antonatos S., Anastasiadou P., Milonas P., Machera K. Pesticides residues and metabolites in honeybees: A Greek overview exploring Varroa and Nosema potential synergies. Science of The Total Environment,2021, 769: 145213 CrossRef
  14. Murcia-Morales M., Díaz-Galiano F.J., Vejsnæs F., Kilpinen O., Van der Steen J.J.M., Fernández-Alba A.R. Environmental monitoring study of pesticide contamination in Denmark through honey bee colonies using APIStrip-based sampling. Environmental Pollution, 2021, 290: 117888 CrossRef
  15. Pan X.-L., Dong F.-S., Wu X.-H., Xu J., Liu X.-G., Zheng Y.-Q. Progress of the discovery, application, and control technologies of chemical pesticides in China. Journal of Integrative Agriculture, 2019, 18(4): 840-853 CrossRef
  16. Anuchina A.V. Mezhdunarodnyy studencheskiy nauchnyy vestnik, 2019, 1: 1 (in Russ.).
  17. Wołejko E., Jabłońska-Trypuć A., Wydro U., Butarewicz A., Łozowicka B. Soil biological activity as an indicator of soil pollution with pesticides — a review. Applied Soil Ecology, 2020, 147: 103356 CrossRef
  18. Sukhoruchenko G.I. Zashchita i karantin rasteniy, 2020, 1: 14-18 (in Russ.).
  19. Leong W.-H., Teh S.-Y., Hossain M.M., Nadarajaw T., Zabidi-Hussin Z., Chin S.-Y., Lai K.S., Lim S.-H.E. Application, monitoring and adverse effects in pesticide use: the importance of reinforcement of Good Agricultural Practices (GAPs). Journal of Environmental Management, 2020, 260: 109987 CrossRef
  20. Chavoshani A., Hashemi M., Mehdi Amin M., Ameta S.C. Chapter 5 — Risks and challenges of pesticides in aquatic environments. In: Micropollutants and challenges. A. Chavoshani, M. Hashemi, M.M. Amin, S.C. Ameta (eds.). Elsevier, 2020: 179-213 CrossRef
  21. Agost L., Velázquez G.A. Peri-urban pesticide contamination risk index. Ecological Indicators, 2020, 114: 106338 CrossRef
  22. Miroshnikova D.I., Kiryushin V.A., Motalova T.V. Nauka molodykh, 2018, 6(2): 318-325 (in Russ.).
  23. Yu X., Zhang R., Liu H., Zhang Z., Shi X., Sun A., Chen J. Highly-selective complex matrices removal via a modified QuEChERS for determination of triazine herbicide residues and risk assessment in bivalves. Food Chemistry, 2021, 347: 129030 CrossRef
  24. Lojo-López M., Andrades J.A., Egea-Corbacho A., Coello M.D., Quiroga J.M. Degradation of simazine by photolysis of hydrogen peroxide Fenton and photo-Fenton under darkness, sunlight and UV light. Journal of Water Process Engineering, 2021, 42: 102115 CrossRef
  25. Stranovoy obzor proizvodstva i ispol’zovaniya osobo opasnykh pestitsidov v Rossii [Country overview of the production and use of highly hazardous pesticides in Russia]. Moscow, 2020. Available: https://ipen.org/sites/default/files/documents/final_russia_hhp_country_situation_report_ru_and_en_14_may_2020.pdf.  Accessed 09/24/2023 (in Russ.).
  26. Gosudarstvennyy katalog pestitsidov i agrokhimikatov po sostoyaniyu na 11 iyulya 2023 g. Available: https://mcx.gov.ru/ministry/departments/departament-rastenievodstva-mekhanizatsii-khimizatsii-i-zashchity-rasteniy/industry-information/info-arkhiv/?ysclid=lpcbjzbs3w287727821. Accessed: 01.08.2023 (in Russ.).
  27. PAN International List of Highly Hazardous Pesticides (PAN List of HHPs). March 2021. Available: https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: 11.07.2023.
  28. Tsygankov V.Y. Organochlorine pesticides in marine ecosystems of the Far Eastern Seas of Russia (2000-2017). Water Research, 2019, 161: 43-53 CrossRef
  29. De O. Gomes H., Menezes J.M.C., da Costa J.G.M., Coutinho H.D.M., Teixeira R.N.P., do Nascimento R.F. A socio-environmental perspective on pesticide use and food production. Ecotoxicology and Environmental Safety, 2020, 197: 110627 CrossRef
  30. Tuzimski T. Herbicides and pesticides. In: Encyclopedia of Analytical Science. P. Worsfold, C. Poole, A. Townshend, M. Miró (eds). Academic Press, 2019: 391-398 CrossRef
  31. Rathi B.S., Kumar P.S., Vo D.-V.N. Critical review on hazardous pollutants in water environment: Occurrence, monitoring, fate, removal technologies and risk assessment. Science of The Total Environment, 2021, 797: 149134 CrossRef
  32. The WHO recommended classification of pesticides by hazard and guidelines to classification 2019. Available: https://apps.who.int/iris/bitstream/handle/10665/332193/9789240005662-eng.pdf?ua=1. Accessed: 07/11/2023.
  33. MR 1.2.0235-21. Gigienicheskaya klassifikatsiya pestitsidov i agrokhimikatov po stepeni opasnosti. Available: https://base.garant.ru/407586426/?ysclid=lpcbrd2q7m329935195. Accessed: 24.091.2023 (in Russ.).
  34. Danilova A.A. Agrokhimiya, 2021, 6: 49-56 (in Russ.).
  35. Kalyabina V.P., Esimbekova E.N., Kopylova K.V., Kratasyuk V.A. Pesticides: formulants, distribution pathways and effects on human health — a review. Toxicology Reports, 2021, 8: 1179-1192 CrossRef
  36. Chmiel T., Mieszkowska A., Kempińska-Kupczyk D., Kot-Wasik A., Namieśnik J., Mazerska Z. The impact of lipophilicity on environmental processes, drug delivery and bioavailability of food components. Microchemical Journal, 2019, 146: 393-406 CrossRef
  37. Beiras R. Chapter 12 — Biotransformation. In: Marine pollution. R. Beiras (ed.). Elsevier, 2018: 205-214 CrossRef
  38. Kim S.-K., Kang C.-K. Temporal and spatial variations in hydrophobicity dependence of field-derived metrics to assess the biomagnification potential of hydrophobic organochlorine compounds. Science of The Total Environment, 2019, 690: 300-312 CrossRef
  39. Olisah C., Rubidge G., Human L.R.D., Adams J.B. A translocation analysis of organophosphate pesticides between surface water, sediments and tissues of common reed Phragmites australis. Chemosphere, 2021, 284: 131380 CrossRef
  40. Rygalov A.S. Vremya otkrytiy, 2019, 5(5): 24-32 (in Russ.).
  41. Mallyabaeva M.I., Tyumkina T.V., Zaynutdinova E.M., Balakireva S.V., Kudryavtseva I.Yu., Safarov A.Kh. Problemy sbora, podgotovki i transporta nefti i nefteproduktov, 2021, 2(130): 93-104 (in Russ.).
  42. Arisekar U., Shakila R.J., Jeyasekaran G., Shalini R., Kumar P., Malani A.H., Rani V. Accumulation of organochlorine and pyrethroid pesticide residues in fish, water, and sediments in the Thamirabarani river system of southern peninsular India. Environmental Nanotechnology. Monitoring & Management, 2019, 11: 100194 CrossRef
  43. Hansch C., Leo A., Hoekman D. Exploring QSAR — hydrophobic, electronic, and steric constants. American Chemical Society, Washington, DC: 1995.
  44. Dorozhkin V.I. Rossiyskiy zhurnal Problemy veterinarnoy sanitarii, gigieny i ekologii, 2021, 3(39): 244-248 (in Russ.).
  45. Huang Y., Zhang W., Pang S., Chen J., Bhatt P., Mishra S., Chen S. Insights into the microbial degradation and catalytic mechanisms of chlorpyrifos. Environmental Research, 2021, 194: 110660 CrossRef
  46. Aseperi A.K., Busquets R., Cheung P.C.W., Hooda P.S., Barker J. Fate of neonicotinoids in the environment: why bees are threatened. In: The handbook of environmental chemistry. A. Núñez-Delgado, M. Arias-Estévez (eds.). Springer, Berlin, 2022 CrossRef
  47. Azpiazu C., Bosch J., Bortolotti L., Medrzycki P., Teper D., Molowny-Horas R., Sgolastra F. Toxicity of the insecticide sulfoxaflor alone and in combination with the fungicide fluxapyroxad in three bee species. Scientific Reports, 2021, 11(1): 6821 CrossRef
  48. Fent K., Haltiner T., Kunz P., Christen V. Insecticides cause transcriptional alterations of endocrine related genes in the brain of honey bee foragers. Chemosphere, 2020, 260: 127542 CrossRef
  49. Burlaka S.D., Muzychenko G.F. Elektronnyy setevoy politematicheskiy zhurnal «Nauchnye trudy KubGTU», 2019, 7: 283-287 (in Russ.).
  50. Hintze S., Hannalla Y.S.B., Guinchard S., Hunkeler D., Glauser G. Determination of chlorothalonil metabolites in soil and water samples. Journal of Chromatography A, 2021, 1655: 462507 CrossRef
  51. Gobas F.A.P.C., Lai H.-F., Mackay D., Padilla L.E., Goetz A., Jackson S.H. AGRO-2014: A time dependent model for assessing the fate and food-web bioaccumulation of organic pesticides in farm ponds: model testing and performance analysis. Science of The Total Environment, 2018, 639: 1324-1333 CrossRef
  52. Tan H., Li Q., Zhang H., Wu C., Zhao S., Deng X., Li Y. Pesticide residues in agricultural topsoil from the Hainan tropical riverside basin: determination, distribution, and relationships with planting patterns and surface water. Science of The Total Environment, 2020, 722: 137856 CrossRef
  53. Vieira C.E.D., Costa P.G., Caldas S.S., Tesser M.E., Risso W.E., Escarrone A.L.V., Primel E.G., Bianchini A., dos Reis Martinez C.B. An integrated approach in subtropical agro-ecosystems: Active biomonitoring, environmental contaminants, bioaccumulation, and multiple biomarkers in fish. Science of The Total Environment, 2019, 666: 508-524 CrossRef
  54. Rossi A.S., Fantón N., Michlig M.P., Repetti M.R., Cazenave J. Fish inhabiting rice fields: Bioaccumulation, oxidative stress and neurotoxic effects after pesticides application. Ecological Indicators, 2020, 113: 106186 CrossRef
  55. Robertus Yu.V., Puzanov A.V., Kulikova-Khlebnikova E.N., Lyubimov R.V. Agrokhimiya, 2017, 3: 38-47 (in Russ.).
  56. Barghi M., Jin X., Lee S., Jeong Y., Yu J.-P., Paek W.-K., Moon H.-B. Accumulation and exposure assessment of persistent chlorinated and fluorinated contaminants in Korean birds. Science of The Total Environment, 2018, 645: 220-228 CrossRef
  57. Volschenk C.M., Gerber R., Mkhonto M.T., Ikenaka Y., Yohannes Y.B., Nakayama S., Ishizuka M., van Vuren J.H.J., Wepener V., Smit N.J. Bioaccumulation of persistent organic pollutants and their trophic transfer through the food web: Human health risks to the rural communities reliant on fish from South Africa's largest floodplain. Science of The Total Environment, 2019, 685: 1116-1126 CrossRef
  58. Zhang Z., Pei N., Sun Y., Li J., Li X., Yu S., Xu X., Hu Y., Mai B. Halogenated organic pollutants in sediments and organisms from mangrove wetlands of the Jiulong River Estuary, South China. Environmental Research, 2019, 171: 145-152 CrossRef
  59. Zhu C., Sun Y., Li D., Zheng X., Peng X., Zhu T., Mo L., Luo X., Xu X., Mai B. Evidence for complex sources of persistent halogenated compounds in birds from the south China sea. Environmental Research, 2020, 185: 109462 CrossRef
  60. Govaerts A., Verhaert V., Covaci A., Jaspers V.L.B., Berg O.K., Addo-Bediako A., Jooste A., Bervoets L. Distribution and bioaccumulation of POPs and mercury in the Ga-Selati River (South Africa) and the rivers Gudbrandsdalslågen and Rena (Norway). Environment International, 2018, 121(Part 2): 1319-1330 CrossRef
  61. Ferré D.M., Jotallan P.J., Lentini V., Ludueña H.R., Romano R.R., Gorla N.B.M. Biomonitoring of the hematological, biochemical and genotoxic effects of the mixture cypermethrin plus chlorpyrifos applications in bovines. Science of the Total Environment, 2020, 726: 138058 CrossRef
  62. Ferré D.M., Ludueña H.R., Romano R.R., Gorla N.B.M. Evaluation of the genotoxic potential of cypermethrin, chlorpyrifos and their subsequent mixture, on cultured bovine lymphocytes. Chemosphere, 2020, 243: 125341 CrossRef
  63. Wang L., Wang L., Shi X., Xu S. Chlorpyrifos induces the apoptosis and necroptosis of L8824 cells through the ROS/PTEN/PI3K/AKT axis. Journal of Hazardous Materials, 2020, 398: 122905 CrossRef
  64. Almami I.S., Aldubayan M.A., Felemban S.G., Alyamani N., Howden R., Robinson A., Pearson T.D.Z., Boocock D., Algarni A.S., Garner A.C., Griffin M., Bonner P.L.R., Hargreaves  A.J. Neurite outgrowth inhibitory levels of organophosphates induce tissue transglutaminase activity in differentiating N2a cells: evidence for covalent adduct formation. Archives of Toxicology, 2020, 94: 3861-3875 CrossRef
  65. Fu L., Lu X., Tan J., Zhang H., Zhang Y., Wang S., Chen J. Bioaccumulation and human health risks of OCPs and PCBs in freshwater products of Northeast China. Environmental Pollution, 2018, 242(Part B): 1527-1534 CrossRef
  66. Pang G.-F., Fan C.-L., Chang Q.-Y., Yang F., Cao Y.-Zh. A GC–MS, GC–MS/MS and LC–MS/MS study of the degradation profiles of pesticide residues in green tea. In: Analysis of pesticide in tea /G.-F. Pang, C.-L. Fan, Q.-Y. Chang, F. Yang, Y.-Zh. Cao (eds.). Elsevier, 2018: 849-858 CrossRef
  67. De Paepe E., Wauters J., Van Der Borght M., Claes J., Huysman S., Croubels S., Vanhaecke L. Ultra-high-performance liquid chromatography coupled to quadrupole orbitrap high-resolution mass spectrometry for multi-residue screening of pesticides, (veterinary) drugs and mycotoxins in edible insects. Food Chemistry, 2019, 293: 187-196 CrossRef
  68. Hasan G.M.M.A., Das A.K., Satter M.A. Multi residue analysis of organochlorine pesticides in fish, milk, egg and their feed by GC-MS/MS and their impact assessment on consumers health in Bangladesh. NFS Journal, 2022, 27: 28-35 CrossRef
  69. Lavrukhina O.I., Amelin V.G., Kish L.K., Tret’yakov A.V., Lavrukhin D.K. Khimicheskaya bezopasnost’, 2022, 6(2): 81-116 CrossRef (in Russ.).
  70. Istomin A.V., Eliseev Yu.Yu., Eliseeva Yu.V. Zdorov’e naseleniya i sreda obitaniya — ZNiSO, 2014, 2(251): 18-2 (in Russ.).
  71. Zaytseva N.V., Khotimchenko S.A., Shur P.Z., Suvorov D.V., Zelenkin S.E., Bessonov V.V. Voprosy pitaniya, 2023, 92(1): 26-35 CrossRef (in Russ.).
  72. Danek M., Plonka J., Barchanska H. Metabolic profiles and non-targeted LC–MS/MS approach as a complementary tool to targeted analysis in assessment of plant exposure to pesticides. Food Chemistry, 2021, 356: 129680 CrossRef
  73. Gosudarstvennyy reestr lekarstvennykh sredstv dlya veterinarnogo primeneniya [State register of medicines for veterinary use]. Available: https://galen.vetrf.ru/#/registry/pharm/registry?page=1&f_chemicalName=amitraz. Accessed: 03/16/2023 (in Russ.).
  74. Kast C., Sieber T., Droz B., Peduzzi D., Fontana-Mauron C., Kilchenmann V. Amitraz-Abbauprodukte in Honig und Wachs. Schweizerische Bienen-Zeitung, 2021, 11: 16-19.
  75. ILO International Chemical Safety Cards (ICSC). ICSC number 1562. Available: https://www.ilo.org/dyn/icsc/showcard.display?p_lang=en&p_card_id=1562&p_version=2. Accessed: 02/28/2023.
  76. Watanabe E. Review of sample preparation methods for chromatographic analysis of neonicotinoids in agricultural and environmental matrices: from classical to state-of-the-art methods. Journal of Chromatography A, 2021, 1643: 462042 CrossRef
  77. Casida J.E. Neonicotinoid metabolism: compounds, substituents, pathways, enzymes, organisms, and relevance. Journal of Agricultural and Food Chemistry, 2011, 59(7): 2923-2931 CrossRef
  78. Rajski Ł., Petromelidou S., Díaz-Galiano F.J., Ferrer C., Fernández-Alba A.R. Improving the simultaneous target and non-target analysis LC-amenable pesticide residues using high speed Orbitrap mass spectrometry with combined multiple acquisition modes. Talanta, 2021, 228: 122241 CrossRef
  79. Sun F., Tan H., Li Y., De Boevre M., Zhang H., Zhou J., Li Y., Yang S. An integrated data-dependent and data-independent acquisition method for hazardous compounds screening in foods using a single UHPLC-Q-Orbitrap run. Journal of Hazardous Materials, 2021, 401: 123266 CrossRef
  80. Gómez-Pérez M.L., Romero-González R., Vidal J.L.M., Frenich A.G. Identification of transformation products of pesticides and veterinary drugs in food and related matrices: Use of retrospective analysis. Journal of Chromatography A, 2015, 1389: 133-138 CrossRef
  81. Prata R., López-Ruiz R., Petrarca M.H., Godoy H.T., Frenich A.G., Romero-González R. Targeted and non-targeted analysis of pesticides and aflatoxins in baby foods by liquid chromatography coupled to quadrupole Orbitrap mass spectrometry. Food Control, 2022, 139: 109072 CrossRef
  82. Hrynko I., Kaczyński P., Łozowicka B. A global study of pesticides in bees: QuEChERS as a sample preparation methodology for their analysis — sritical review and perspective. Science of The Total Environment, 2021, 792: 148385 CrossRef
  83. Roik B.O., Ermilov I.V. Aktual’nye voprosy veterinarnoy biologii, 2019, 3(43): 69-78 (in Russ.).
  84. Hidalgo-Ruiz J.L., Romero-González R., Vidal J.L.M., Frenich A.G. Monitoring of polar pesticides and contaminants in edible oils and nuts by liquid chromatography-tandem mass spectrometry. Food Chemistry, 2021, 343: 128495 CrossRef
  85. Grigor’ev V.Yu., Raevskaya O.E., Yarkov A.V., Raevskiy O.A. Biomedical Chemistry: Research and Methods, 2018, 1(3): e00019 CrossRef (in Russ.).
  86. Chandrasekaran B., Abed S.N., Al-Attraqchi O., Kuche K., Tekade R.K. Computer-aided prediction of pharmacokinetic (ADMET) properties. In: Advances in pharmaceutical product development and research, dosage form design parameters /R.K. Tekade (ed.). Academic Press, 2018: 731-755 CrossRef
  87. Sidorov P., Viira B., Davioud-Charvet E., Maran U., Marcou G., Horvath D., Varnek A. QSAR modeling and chemical space analysis of antimalarial compounds. Journal of Computer-Aided Molecular Design, 2017, 31(5): 441-451 CrossRef
  88. Rashid M. Design, synthesis and ADMET prediction of bis-benzimidazole as anticancer agent. Bioorganic Chemistry, 2020, 96: 103576 CrossRef
  89. Speck-Planche A. Multi-scale QSAR approach for simultaneous modeling of ecotoxic effects of pesticides. In: Ecotoxicological QSARs. Methods in pharmacology and toxicology. K. Roy (ed.). Humana, New York, 2020: 639-660 CrossRef
  90. Ilyushina N.A. Ekologicheskaya genetika, 2019, 17(2): 101-112 (in Russ.).
  91. Kolumbin O.G. Vestnik Pridnestrovskogo universiteta. Seriya: Mediko-biologicheskie i khimicheskie nauki, 2020, 2(65): 143-149 (in Russ.).
  92. Fedorov L.A. Yablokov A.V. Pestitsidy — toksicheskiy udar po biosfere i cheloveku [Pesticides are a toxic blow to the biosphere and humans]. Moscow, 1999 (in Russ.).
  93. Henderson A.M., Gervais J.A., Luukinen B., Buhl K., Stone D., Strid A., Cross A., Jenkins J. Glyphosate technical fact sheet. National Pesticide Information Center, Oregon State University Extension Services, 2010. Available: http://npic.orst.edu/factsheets/archive/glyphotech.html. Accessed: 08/11/2022.
  94. Ochoa V., Maestroni B. Pesticides in water, soil, and sediments. In: Integrated analytical approaches for pesticide management. B. Maestroni, A. Cannavan (eds.). Academic Press, 2018.
  95. Bhatt P., Pathak V.M., Joshi S., Bisht T.S., Singh K., Chandra D. Chapter 12 — Major metabolites after degradation of xenobiotics and enzymes involved in these pathways. In: Smart bioremediation technologies. P. Bhatt (eds.). Academic Press, 2019: 205-215 CrossRef
  96. Sharipov D.A., Chetverikov S.P. Ekobiotekh, 2021, 4(1): 60-67 (in Russ.).

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)