PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2023.6.1046eng

UDC: 636.38:575.162

Acknowledgements:
During the research, the equipment of the Center for Biological Resources and Bioengineering of Agricultural Animals (Ernst Federal Research Center for Animal Husbandry) was used.
Sequences of the Iranian sheep complete genomes were provided by Professor A. Esmailizadeh, the Head of project No. 98028814 (from the Iranian side), implemented as part of a competition for the best basic research projects conducted by the Russian Foundation for Basic Research and the National Science Foundation of Iran.
Funded by RFBR and INSF (grant number No 98028814), within the project No. 20-516-56002

 

ANALYSIS OF POLYMORPHISM IN THE MAJOR GENES FOR REPRODUCTIVE TRAITS IN SHEEP (Ovis spp.)

Т.Е. Deniskova1, 2, A.V. Shakhin1, A. Esmailizadeh3,
А.V. Dotsev1, N.А. Zinovieva1

1Ernst Federal Research Center for Animal Husbandry, 60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail horarka@yandex.ru (✉ corresponding author), alexshahin@mail.ru, asnd@mail.ru, n_zinovieva@mail.ru;
2Basic Department of Genetic Technologies in livestock Farming, Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, 23, ul. Akademika Skryabina, Moscow, 109472 Russia;
3Department of Animal Science, Shahid Bahonar University of Kerman, Iran, Kerman 76169-14111, e-mail aliesmaili@uk.ac.ir

ORCID:
Deniskova T.E. orcid.org/0000-0002-5809-1262
Dotsev A.V. orcid.org/0000-0003-3418-2511
Shakhin A.V. orcid.org/0000-0003-4959-878X
Zinovieva N.A. orcid.org/0000-0003-4017-6863
Esmailizadeh A. orcid.org/0000-0003-0986-6639

Final revision received October 16, 2023
Accepted November 06, 2023

The reproductive traits significantly affect the cost of production of sheep products. The BMP15, GDF9 and BMPR1B are the major genes for reproduction in sheep, mutations in which increase number of eggs per ovulation and litter size. The segregation of new mutations in an expanding breed diversity has been periodically reported. In this regard, the search for new SNPs in unexplored breeds is relevant to deepen knowledge about the genetic mechanisms underlying sheep prolificacy. In our work, for the first time, a comparative analysis of the complete nucleotide sequences of the GDF9, BMP15 and BMP15B genes in the Romanov sheep was carried out in comparison with other breeds of domestic sheep (Ovis aries L.) and wild relatives. The most significantly varied SNPs were identified based on comparing the Romanov breed with autochthonous breeds of domestic sheep from Russia and the Persian Highlands, as well as wild Ovis species. Polymorphism in the major genes for reproduction in sheep was studied for argali (O. ammon L.) and mouflon (O. orientalis L.) for the first time. SNPs fixed in argali and domestic sheep were identified. The studies were conducted at Ernst Federal Research Center for Animal Husbandry in 2022-2023. We analyzed whole genome sequences of domestic sheep, Romanov (n = 9), other Russian breeds (n = 7), Iranian breeds (n = 6) and wild Ovis species, the Asian mouflon (O. orientalis, n = 16) and argali (O. ammon, n = 4). Alignment to the reference genome was performed using bwa-mem2 and SAMtools. The sequences of the GDF9, BMP15, and BMP15B genes were extracted from the whole genomes, in which the most different SNPs were searched based on the calculation of FST values for each SNP for each pair of groups. Gene sequences comparison of the Romanov breed with other breeds showed that the greatest differences were identified in the BMPR1B gene (FST = 0.562-0.749) when compared to the BMP15 (FST = 0.051-0.374) and GDF9 genes(FST = 0.037-0.660). Comparative analysis of gene sequences in the Romanov sheep and argali showed the presence of fixed SNPs (FST = 1), while one such SNP was identified in the GDF9 gene. The highest FST values identified based on comparing Romanov breed sheep with mouflon were 0.702-0.780 (BMPR1B gene), 0.113-0.645 (BMP15 gene) and 0.338-0.512 (GDF9 gene). Thus, target SNPs were identified the effect of which on reproductive traits in the Romanov sheep should be studied in future work.

Keywords: SNP, candidate genes, Ovis aries, Ovis ammon, Ovis orientalis, domestic sheep, wild species, prolificacy.

 

REFERENCES

  1. Mamontova T.V., Selionova M.I., Aybazov A.-M.M. Sexual activity and sperm production of charolais and ile-de-france rams in different seasons of the year. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2021, 56(4): 752-762 CrossRef
  2. Lukanina V.A., Chinarov R.Yu., Singina G.N. The effect of hormonal stimulation scheme and season on the efficiency of estrus synchronization in Romanov ewes (Ovis aries L.). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2023, 58(2): 333-344 CrossRef
  3. Dong J., Albertini D.F., Nishimori K., Kumar T.R., Lu N., Matzuk M.M. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature, 1996, 383(6600): 531-535 CrossRef
  4. Nilsson E.E., Skinner M.K. Growth and differentiation factor-9 stimulates progression of early primary but not primordial rat ovarian follicle development. Biology of Reproduction, 2002, 67(3): 1018-1024 CrossRef
  5. Gilchrist R.B., Ritter L.J., Myllymaa S., Kaivo-Oja N., Dragovic R.A., Hickey T.E., Ritvos O., Mottershead D.G. Molecular basis of oocyte-paracrine signalling that promotes granulosa cell proliferation. Journal of Cell Science, 2006, 119(Pt 18): 3811-3821 CrossRef
  6. Spicer L.J., Aad P.Y., Allen D., Mazerbourg S., Hsueh A.J. Growth differentiation factor-9 has divergent effects on proliferation and steroidogenesis of bovine granulosa cells. Journal of Endocrinology, 2006, 189(2): 329-339 CrossRef
  7. Hussein T.S., Froiland D.A., Amato F., Thompson J.G., Gilchrist R.B. Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. Journal of Cell Science, 2005, 118(Pt 22): 5257-5268 CrossRef
  8. Orisaka M., Orisaka S., Jiang J.Y., Craig J., Wang Y., Kotsuji F., Tsang B.K. Growth differentiation factor 9 is antiapoptotic during follicular development from preantral to early antral stage. Molecular Endocrinology, 2006, 20(10): 2456-2468 CrossRef
  9. Juengel J.L., Bodensteiner K.J., Heath D.A., Hudson N.L., Moeller C.L., Smith P., Galloway S.M., Davis G.H., Sawyer H.R., McNatty K.P. Physiology of GDF9 and BMP15 signalling molecules. Animal Reproduction Science, 2004, 82-83: 447-460 CrossRef
  10. Inagaki K., Shimasaki S. Impaired production of BMP-15 and GDF-9 mature proteins derived from proproteins with mutations in the proregion. Molecular and Cellular Endocrinology, 2010, 328 (1-2): 1-7 CrossRef
  11. Otsuka F., McTavish K.J., Shimasaki S. Integral role of GDF-9 and BMP-15 in ovarian function. Molecular Reproduction and Development, 2011, 78(1): 9-21 CrossRef
  12. Galloway S.M., McNatty K.P., Cambridge L.M., Laitinen M.P., Juengel J.L., Jokiranta T.S., McLaren R.J., Luiro K., Dodds K.G., Montgomery G.W., Beattie A.E., Davis G.H. Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nature Genetics, 2000, 25(3): 279-283 CrossRef
  13. Hanrahan J.P., Gregan S.M., Mulsant P., Mullen M., Davis G.H., Powell R., Galloway S.M. Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biology of Reproduction, 2004, 70 (4): 900-909 CrossRef
  14. Bodin L., Di Pasquale E., Fabre S., Bontoux M., Monget P., Persani L., Mulsant P. A novel mutation in the bone morphogenetic protein 15 gene causing defective protein secretion is associated with both increased ovulation rate and sterility in Lacaune sheep. Endocrinology, 2007, 148(1): 393-400 CrossRef
  15. Martinez-Royo A., Jurado J.J., Smulders J.P., Martí J.I., Alabart J.L., Roche A., Fantova E., Bodin L., Mulsant P., Serrano M., Folch J., Calvo J.H. A deletion in the bone morphogenetic protein 15 gene causes sterility and increased prolificacy in Rasa Aragonesa sheep. Animal Genetics, 2008, 39(3): 294-297 CrossRef
  16. Monteagudo L.V., Ponz R., Tejedor M.T., Lavina A., Sierra I. A 17 bp deletion in the Bone Morphogenetic Protein 15 (BMP15) gene is associated to increased prolificacy in the Rasa Aragonesa sheep breed. Animal Reproduction Science, 2009, 110(1-2): 139-146 CrossRef
  17. Lassoued N., Benkhlil Z., Woloszyn F., Rejeb A., Aouina M., Rekik M., Fabre S., Bedhiaf-Romdhani S. FecX Bar a novel BMP15 mutation responsible for prolificacy and female sterility in Tunisian Barbarine sheep. BMC Genetics, 2017, 18(1): 43 CrossRef
  18. Demars J., Fabre S., Sarry J., Rossetti R., Gilbert H., Persani L., Tosser-Klopp G., Mulsant P., Nowak Z., Drobik W., Martyniuk E., Bodin L. Genome-wide association studies identify two novel BMP15 mutations responsible for an atypical hyperprolificacy phenotype in sheep. PLoS Genetics, 2013, 9(4): e1003482 CrossRef
  19. Mulsant P., Lecerf F., Fabre S., Schibler L., Monget P., Lanneluc I., Pisselet C., Riquet J., Monniaux D., Callebaut I., Cribiu E., Thimonier J., Teyssier J., Bodin L., Cognié Y., Chitour N., Elsen J.M. Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Merino ewes. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(9): 5104-5109 CrossRef
  20. Souza C.J., MacDougall C., Campbell B.K., McNeilly A.S., Baird D.T. The Booroola (FecB) phenotype is associated with a mutation in the bone morphogenetic receptor type 1 B (BMPR1B) gene. Journal of Endocrinology, 2001, 169(2): R1-6 CrossRef
  21. Wilson T., Wu X.Y., Juengel J.L., Ross I.K., Lumsden J.M., Lord E.A., Dodds K.G., Walling G.A., McEwan J.C., O’Connell A.R., McNatty K.P., Montgomery G.W. Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells. Biology of Reproduction, 2001, 64(4): 1225-1235 CrossRef
  22. Davis G.H., Galloway S.M., Ross I.K., Gregan S.M., Ward J., Nimbkar B.V., Ghalsasi P.M., Nimbkar C.G., Gray G.D., Subandriyo, Inounu I., Tiesnamurti B., Martyniuk E., Eythorsdottir E., Mulsant P., Lecerf F., Hanrahan J.P., Bradford G.E., Wilson T. DNA tests in prolific sheep from eight countries provide new evidence on origin of the Booroola (FecB) mutation. Biology of Reproduction, 2002, 66(6): 1869-1874 CrossRef
  23. Polley S., De S., Brahma B., Mukherjee A., Vinesh P.V., Batabyal S., Arora J.S., Pan S., Samanta A.K., Datta T.K., Goswami S.L. Polymorphism of BMPR1B, BMP15 and GDF9 fecundity genes in prolific Garole sheep. Tropical Animal Health and Production, 2010, 42(5): 985-993 CrossRef
  24. Bradford G.E., Inounu I., Iniguez L.C., Tiesnamurti B., Thomas D.L. The prolificacygene of Javanese sheep. In: Major genes for reproduction in sheep. J.M. Elsen, L. Bodin, J. Thimonier (eds.). Inra, Paris, France, 1991.
  25. Davis G.H. Major genes affecting ovulation rate in sheep. Genetics Selection Evolution, 2005, 37(Suppl. 1): 11-23 CrossRef
  26. Hua G.H., Yang L.G. A review of research progress of FecB gene in Chinese breeds of sheep. Animal Reproduction Science, 2009, 116(1-2): 1-9 CrossRef
  27. Zuo B., Qian H., Wang Z., Wang X., Nisa N., Bayier A., Ying S., Hu X., Gong C., Guo Z., Wang F. A study on BMPR-IB genes of Bayanbulak sheep. Asian-Australasian Journal of Animal Sciences, 2013, 26(1): 36-42 CrossRef
  28. Roy J., Polley S., De S., Mukherjee A., Batabyal S., Pan S., Brahma B., Datta T.K., Goswami S.L. Polymorphism of fecundity genes (FecB, FecX, and FecG) in the Indian Bonpala sheep. Animal Biotechnology, 2011, 22(3): 151-162 CrossRef
  29. Mahdavi M., Nanekarani S., Hosseini S.D. Mutation in BMPR-IB gene is associated with litter size in Iranian Kalehkoohi sheep. Animal Reproduction Science, 2014, 147(3-4): 93-98 CrossRef
  30. Nicol L., Bishop S.C., Pong-Wong R., Bendixen C., Holm L.E., Rhind S.M., McNeilly A.S. Homozygosity for a single base-pair mutation in the oocyte-specific GDF9 gene results in sterility in Thoka sheep. Reproduction, 2009, 138(6): 921-933 CrossRef
  31. Silva B.D., Castro E.A., Souza C.J., Paiva S.R., Sartori R., Franco M.M., Azevedo H.C., Silva T.A., Vieira A.M., Neves J.P., Melo E.O. A new polymorphism in the Growth and Differentiation Factor 9 (GDF9) gene is associated with increased ovulation rate and prolificacy in homozygous sheep. Animal Genetics, 2011, 42(1): 89-92 CrossRef
  32. Souza C.J., McNeilly A.S., Benavides M.V., Melo E.O., Moraes J.C. Mutation in the protease cleavage site of GDF9 increases ovulation rate and litter size in heterozygous ewes and causes infertility in homozygous ewes. Animal Genetics, 2014, 45(5): 732-739 CrossRef
  33. Li Y., Jin W., Wang Y., Zhang J., Meng C., Wang H., Qian Y., Li Q., Cao S. Three complete linkage SNPs of GDF9 gene affect the litter size probably mediated by OCT1 in Hu sheep. DNA Cell Biology, 2020, 39(4): 563-571 CrossRef
  34. European Nucleotide Archive (ENA). Available: https://www.ebi.ac.uk/. No date.
  35. The National Center for Biotechnology Information (NCBI). Available: https://www.ncbi.nlm.nih.gov/. No date.
  36. Vasimuddin M., Misra S., Li H., Aluru S. Efficient architecture-aware acceleration of BWA-MEM for multicore systems. Proc.2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS). Rio de Janeiro, Brazil, 2019:314-324 CrossRef
  37. Danecek P., Bonfield J.K., Liddle J., Marshall J., Ohan V., Pollard M.O., Whitwham A., Keane T., McCarthy S.A., Davies R.M., Li H. Twelve years of SAMtools and BCFtools. GigaScience, 2021, 10(2): giab008 CrossRef
  38. Pembleton L.W., Cogan N.O., Forster J.W. StAMPP: an R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Molecular Ecology Resources, 2013, 13(5): 946-952 CrossRef
  39. Dolebo A.T., Khayatzadeh N., Melesse A., Wragg D., Rekik M., Haile A., Rischkowsky B., Rothschild M.F., Mwacharo J.M. Genome-wide scans identify known and novel regions associated with prolificacy and reproduction traits in a sub-Saharan African indigenous sheep (Ovis aries). Mammalian Genome, 2019, 30(11-12): 339-352 CrossRef
  40. Drouilhet L., Mansanet C., Sarry J., Tabet K., Bardou P., Woloszyn F., Lluch J., Harichaux G., Viguié C., Monniaux D., Bodin L., Mulsant P., Fabre S. The highly prolific phenotype of Lacaune sheep is associated with an ectopic expression of the B4GALNT2 gene within the ovary. PLoS Genetics, 2013, 9(9): e1003809 CrossRef
  41. Ozmen O., Seker I., Cinar Kul B., Ertugrul O. Haplotype variation of estrogen receptor α (erα) gene exon 4 in Turkish sheep breeds. Genetika, 2012, 48 (10): 1185-1189.
  42. Chu M.X., Guo X.H., Feng C.J., Li Y., Huang D.W., Feng T., Cao G.L., Fang L., Di R., Tang Q.Q., Ma Y.H., Li K. Polymorphism of 5’ regulatory region of ovine FSHR gene and its association with litter size in Small Tail Han sheep. Molecular Biology Reports, 2012, 39(4): 3721-3725 CrossRef
  43. Lu T.T., Makishima M., Repa J.J., Schoonjans K., Kerr T.A., Auwerx J., Mangelsdorf D.J. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Molecular Cell, 2000, 6(3): 507-515 CrossRef
  44. Selionova M.I., Chizhova L.N., Surzhikova E.S., Podkorytov N.A., Podkorytov A.T. Sibirskiy vestnik sel’skokhozyaystvennoy nauki, 2020, 50(1): 92-100 CrossRef (in Russ.).
  45. Ozdemirov A.A., Chizhova L.N., Khozhokov A.A., Surzhikova E.S., Dogeev G.D., Abdulmagomedov S.Sh. Yug Rossii: ekologiya, razvitie, 2021, 16(2): 39-44 CrossRef (in Russ.).
  46. Skorykh L.N., Sukhoveeva A.V., Surzhikova E.S. Ovtsy, kozy, sherstyanoe delo, 2022, 2: 22-25 CrossRef (in Russ.).
  47. Malyuchenko O.P., Alekseev Ya.I., Monakhova Yu.A., Marzanova S.N., Marzanov N.S. Izvestiya Timiryazevskoy sel’skokhozyaystvennoy akademii, 2011, 6: 167-169 (in Russ.).
  48. Marzanov N.S., Devrishov D.A., Ozerov M.Y., Maluchenko O.P., Marzanova S.N., Shukurova E.B., Koreckaya E.A., Kantanen J., Petit D. The significance of a multilocus analysis for assessing the biodiversity of the Romanov sheep breed in a comparative aspect. Animals (Basel), 2023, 13(8): 1320 CrossRef
  49. Chen Z.H., Xu Y.X., Xie X.L., Wang D.F., Aguilar-Gómez D., Liu G.J., Li X., Esmailizadeh A., Rezaei V., Kantanen J., Ammosov I., Nosrati M., Periasamy K., Coltman D.W., Lenstra J.A., Nielsen R., Li M.H. Whole-genome sequence analysis unveils different origins of European and Asiatic mouflon and domestication-related genes in sheep. Communications Biology, 2021, 4(1): 1307 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)