PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2023.6.1035eng

UDC: 636.2:57.082.133:577.2

Acknowledgements:
The equipment of the Center for Collective Use “Bioresources and bioengineering of farm animals” (Ernst Federal Research Center for Animal Husbandry) was used.
Supported financially by the Russian Science Foundation, project No. 19-76-20012

 

DETERMINATION OF CONSENSUS GENOTYPES BY MICROSATELLITES FOR MUSEUM ACCESSIONS OF CATTLE (Вos taurus)

A.S. Abdelmanova1 , V.V. Volkova 1, V.R. Kharzinova1,
M.S. Fornara1, R.Yu. Chinarov1, O.I. Boronetskaya2,
V.I. Trukhachev2, G. Brem1, 3, N.A. Zinovieva1

1Ernst Federal Research Center for Animal Husbandry, 60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail abdelmanova@vij.ru (✉ corresponding author), moonlit_elf@mail.ru,, eronika0784@mail.ru,
argaretfornara@gmail.com,, roman_chinarov@mail.ru,
_zinovieva@mail.ru;
2Russian State Agrarian University — Timiryazev Moscow Agricultural Academy, 49, ul. Timiryazevskaya, Moscow, 127550 Russia, e-mail rector@rgau-msha.ru,liskun@rgau-msha.ru;
3Institut für Tierzucht und Genetik, University of Veterinary Medicine (VMU),Veterinärplatz, A-1210, Vienna, Austria, e-mail ottfried.brem@agrobiogen.de

ORCID:
Abdelmanova A.S. orcid.org/0000-0003-4752-0727
Boronetskaya O.I. orcid.org/0000-0001-8389-5572
Volkova V.V. orcid.org/0000-0002-2080-0182
Trukhachev V.I. orcid.org/0000-0002-4650-1893
Kharzinova V.R. orcid.org/0000-0002-8067-0404
Brem G. orcid.org/0000-0002-7522-0708
Fornara M.S. orcid.org/0000-0002-8844-177X
Zinovieva N.A. orcid.org/0000-0003-4017-6863
Chinarov R.Yu. orcid.org/0000-0001-6511-5341

Final revision received October 08, 2023
Accepted November 03, 2023

DNA analysis of ancient and historical samples, including specimens stored in museum and craniological collections, is an invaluable source of genetic information for reconstructing the origin of local breeds of livestock. Given the high degree of DNA degradation in most of these samples, studies are usually conducted on the mitochondrial genome, since it is present in hundreds or even thousands of copies in a single cell. However, in some cases, the study of mitochondrial DNA (mtDNA) does not allow us to fully trace the demographic history of animal species and breeds, especially when crossbreeding is used in breeding work. An informative tool for analyzing these types of demographic events is the study of microsatellites, or short tandem repeats (STRs). However, in microsatellite genotyping for DNA extracted from museum specimens imposes an increased risk of amplification errors. The aim of our work was to improve the algorithm for determining consensus STR marker genotypes for samples containing highly degraded DNA and to evaluate the effectiveness of the algorithm suggested for cattle craniological museum samples. The material were museum exhibits of cattle skulls dated from the end of the 19th to the first half of the 20th century and stored in the craniological collection of the Liskun Museum of Animal Husbandry (RSAU — Timiryazev Moscow Agricultural Academy). For genotyping, a multiplex panel was used which included 11 microsatellite loci recommended by the International Society of Animal Genetics (ISAG), according to protocols adopted at the Ernst Federal Research Center for Animal Husbandry. The success of amplification for each locus in the sample was assessed by calculating genotyping quality indices (QI). The most frequently occurring genotypes were coded as 1, and the genotypes that differed from those coded as 1 due to allelic drop-out (ADO) or false alleles (FA) were defined as 0. Next, the proportion was calculated of genotypes with the value 1 to the total number of repetitions. The threshold value for QI was set at 0.75. The genotypes that showed a frequency of occurrence above the threshold value for each locus were included in the consensus genotype. The algorithm was tested on 144 museum samples of black-and-white, Turano-Mongolian, pale-and-white and brown cattle. A complete profile (11 microsatellite loci) was obtained for 60.42 % of accessions. The quality of genotyping at most loci (9 out of 11 loci examined) was above 0.950, ranging from 0.951±0.011 at the TGLA122 locus to 0.995±0.003 at the BM2113 locus. An assessment of genotyping efficiency showed that the TGLA53 and BM1818 loci had the lowest genotyping success (74.86 % and 61.45 %, respectively). A positive correlation at the trend level (r2 = 0.53, p = 0.09) between the size of alleles at the locus and the proportion of genotyping errors was revealed. Since studying the allele pool of populations is impossible without obtaining correct genotypes, our proposed algorithm, which ensures the probability of correct genotyping p < 0.001, can be used when working with museum and other samples containing highly degraded DNA.

Keywords: microsatellites, genotyping errors, consensus genotype, cattle, museum samples.

 

REFERENCES

  1. McHugo G.P., Dover M.J., MacHugh D.E. Unlocking the origins and biology of domestic animals using ancient DNA and paleogenomics. BMC Biol., 2019, 17(1): 98 CrossRef
  2. Edwards C.J., Connellan J., Wallace P.F., Park S.D.E., McCormick F.M., Olsaker I., Eythórsdóttir E., MacHugh D.E., Bailey J.F., Bradley D.G. Feasibility and utility of microsatellite markers in archaeological cattle remains from a Viking Age settlement in Dublin. Animal Genetics, 2003, 34: 410-416 CrossRef
  3. Chen N., Cai Y., Chen Q., Li R., Wang K., Huang Y., Hu S., Huang S., Zhang H., Zheng Z., Song W., Ma Z., Ma Y., Dang R., Zhang Z., Xu L., Jia Y., Liu S., Yue X., Deng W., Zhang X., Sun Z., Lan X., Han J., Chen H., Bradley D.G., Jiang Y., Lei C. Whole-genome resequencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle in East Asia. Nature Communications, 2018, 9(1): 2337 CrossRef
  4. Rowe K.C., Singhal S., Macmanes M.D., Ayroles J.F., Morelli T.L., Rubidge E.M., Bi K., Moritz C.C. Museum genomics: low-cost and high-accuracy genetic data from historical specimens. Molecular Ecology Resources, 2011, 11(6):1082-1092 CrossRef
  5. Billerman S.M., Walsh J. Historical DNA as a tool to address key questions in avian biology and evolution: A review of methods, challenges, applications, and future directions. Molecular Ecology Resources, 2019, 19(5): 1115-1130 CrossRef
  6. Zinov’eva N.A., Sermyagin A.A., Dotsev A.V., Boronetskaya O.I., Petrikeeva L.V., Abdel’manova A.S., Brem G. Animal genetic resources: developing the research of allele pool of Russian cattle breeds — minireview. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2019, 54(4): 631-641 CrossRef
  7. Lari M., Rizzi E., Mona S., Corti G., Catalano G., Chen K., Vernesi C., Larson G., Boscato P., De Bellis G., Cooper A., Caramelli D., Bertorelle G. The complete mitochondrial genome of an 11,450-year-old Aurochsen (Bos primigenius) from Central Italy. BMC Evol. Biol., 2011, 11: 32 CrossRef
  8. Scheu A., Powell A., Bollongino R., Vigne J.D., Tresset A., Çakırlar C., Benecke N., Burger J. The genetic prehistory of domesticated cattle from their origin to the spread across Europe. BMC Genet., 2015, 16: 54 CrossRef
  9. Zhang X., Yang L., Zhao X., Xiang H. The complete mitochondrial genome of an ancient cattle (Bos taurus) from Taosi site, China, and its phylogenetic assessment. Mitochondrial DNA B Resources, 2022, 7(5): 804-806 CrossRef
  10. Gargani M., Pariset L., Lenstra J.A., De Minicis E., European Cattle Genetic Diversity Consortium, Valentini A. Microsatellite genotyping of medieval cattle from central Italy suggests an old origin of Chianina and Romagnola cattle. Front. Genet., 2015, 6: 68 CrossRef
  11. Ballard J.W., Whitlock M.C. The incomplete natural history of mitochondria. Mol. Ecol., 2004, 13(4): 729-744 CrossRef
  12. Glazko V.I., Kosovsky G.Yu., Glazko T.T., Fedorova L.M. DNA markers and microsatellite code (review). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2023, 58(2): 223-248 CrossRef
  13. Brenig B., Schütz E. Recent development of allele frequencies and exclusion probabilities of microsatellites used for parentage control in the German Holstein Friesian cattle population. BMC Genet., 2016, 17: 18 CrossRef
  14. Taberlet P., Waits L.P., Luikart G. Noninvasive genetic sampling: look before you leap. Trends in Ecology & Evolution, 1999, 14(8): 323-327 CrossRef
  15. Taberlet P., Griffin S., Goossens B., Questiau S., Manceau V., Escaravage N., Waits L.P., Bouvet J. Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Research, 1996, 24(16): 3189-3194 CrossRef
  16. Schlötterer C., Tautz D. Slippage synthesis of simple sequence DNA. Nucleic Acids Research, 1992, 20(2): 211-215 CrossRef
  17. Navidi W., Arnheim N., Waterman M.S. A multiple-tubes approach for accurate genotyping of very small DNA samples by using PCR: statistical considerations. American Journal of Human Genetics,1992, 50(2): 347-359.
  18. Abdelmanova A.S., Kharzinova V.R., Volkova V.V., Dotsev A.V., Sermyagin A.A., Boronetskaya O.I., Chinarov R.Y., Lutshikhina E.M., Sölkner J., Brem G., Zinovieva N.A. Comparative study of the genetic diversity of local steppe cattle breeds from Russia, Kazakhstan and Kyrgyzstan by microsatellite analysis of museum and modern samples. Diversity, 2021, 13(8): 351 CrossRef
  19. Arandjelovic M., Guschanski K., Schubert G., Harris T.R., Thalmann O., Siedel H., Vigilant L. Two-step multiplex polymerase chain reaction improves the speed and accuracy of genotyping using DNA from noninvasive and museum samples. Molecular Ecology Resources, 2009, 9(1): 28-36 CrossRef
  20. FAO. Molecular genetic characterization of animal genetic resources: FAO animal production and health guidelines. Rome, Italy, 2011: 68-69. Available: http://www.fao.org/3/i2413e/i2413e00.pdf. Accessed: 09/15/2023.
  21. Abdel’manova A.S., Mishina A.I., Volkova V.V., Chinarov R.Yu., Sermyagin A.A., Dotsev A.V., Boronetskaya O.I., Petrikeeva L.V., Kostyunina O.V., Brem G., Zinov’eva N.A. Comparative study of different methods of DNA extraction from cattle bones specimens maintained in a craniological collection. Sel'skokhozyaistvennayabiologiya[AgriculturalBiology], 2019, 54(6): 1110-1121 CrossRef
  22. Mondol S., Karant K.U., Kumar N.S., Gopalaswamy A.M., Andheria A., Ramakrishnan U. Evaluation of non-invasive genetic sampling methods for estimating tiger population size. Biological Conservation, 2009, 142: 2350-2360 CrossRef
  23. Modi S., Habib B., Ghaskadbi P., Nigam P., Mondol S. Standardization and validation of a panel of cross-species microsatellites to individually identify the Asiatic wild dog (Cuon alpinus). PeerJ., 2019, 7: e7453 CrossRef
  24. Miquel C., Bellemain E., Poillot C., Bessière J., Durand A., Taberlet P. Quality indexes to assess the reliability of genotypes in studies using noninvasive sampling and multiple-tube approach. Molecular Ecology Notes, 2006, 6: 985-988 CrossRef
  25. Broquet T., Petit E. Quantifying genotyping errors in noninvasive population genetics. Molecular Ecology, 2004, 13(11): 3601-3608 CrossRef
  26. Valière N., Bonenfant C., Toïgo C., Luikart G., Gaillard J.M., Klein F. Importance of a pilot study for non-invasive genetic sampling: genotyping errors and population size estimation in red deer. Conservation Genetics, 2007, 8(1): 69-78 CrossRef
  27. Rehnus M., Bollmann K. Non-invasive genetic population density estimation of mountain hares (Lepus timidus) in the Alps: systematic or opportunistic sampling? European Journal of Wildlife Research, 2016, 62: 737-747 CrossRef
  28. He G., Huang K., Guo S., Ji W., Qi X., Ren Y., Jin X., Li B. Evaluating the reliability of microsatellite genotyping from low-quality DNA templates with a polynomial distribution model. Chin. Sci. Bull., 2011, 56: 2523-2530 CrossRef
  29. Hansen H., Ben-David M., McDonald D.B. Technical advances: Effects of genotyping protocols on success and errors in identifying individual river otters (Lontra canadensis) from their faeces. Molecular Ecology Resources, 2008, 8(2): 282-289 CrossRef
  30. Zhan X., Zheng X., Bruford M.W., Wei F., Tao Y. A new method for quantifying genotyping errors for noninvasive genetic studies. Conservation Genetics, 2010, 11: 1567-1571 CrossRef
  31. Ebert C., Sandrini J., Welter B., Thiele B., Hohmann U. Estimating red deer (Cervus elaphus) population size based on non-invasive genetic sampling. European Journal of Wildlife Research, 2021, 67: 27 CrossRef
  32. Sefc K.M., Payne R.B., Sorenson M.D. Microsatellite amplification from museum feather samples: Effects of fragment size and template concentration on genotyping errors. Auk, 2003, 120: 982-989 CrossRef
  33. Polanc P., Sindičić M., Jelenčič M., Gomerčič T., Kos I., Huber Đ. Genotyping success of historical Eurasian lynx (Lynx lynx L.) samples. Molecular Ecology Resources, 2012, 2: 293-298 CrossRef
  34. Jamieson A., Carmagnini A., Howard-McCombe J., Doherty S., Hirons A., Dimopoulos E., Lin A.T., Allen R., Anderson-Whymark H., Barnett R., Batey C., Beglane F., Bowden W., Bratten J., De Cupere B., Drew E., Foley N.M., Fowler T., Fox A., Geigl E.M., Gotfredsen A.B., Grange T., Griffiths D., Groß D., Haruda A., Hjermind J., Knapp Z., Lebrasseur O., Librado P., Lyons L.A., Mainland I., McDonnell C., Muñoz-Fuentes V., Nowak C., O'Connor T., Peters J., Russo I.M., Ryan H., Sheridan A., Sinding M.S., Skoglund P., Swali P., Symmons R., Thomas G., Trolle Jensen T.Z., Kitchener A.C., Senn H., Lawson D., Driscoll C., Murphy W.J., Beaumont M., Ottoni C., Sykes N., Larson G., Frantz L. Limited historical admixture between European wildcats and domestic cats. Current Biology, 2023, 33(21): 4751-4760.e14 CrossRef
  35. Uricoechea Patiño D., Collins A., Romero García O.J., Santos Vecino G., Aristizábal Espinosa P., Bernal Villegas J.E., Benavides Benitez E., Vergara Muñoz S., Briceño Balcázar I. Unraveling the genetic threads of history: mtDNA HVS-I analysis reveals the ancient past of the Aburra Valley. Genes (Basel), 2023, 14(11): 2036 CrossRef
  36. Chen N., Zhang Z., Hou J., Chen J., Gao X., Tang L., Wangdue S., Zhang X., Sinding M.S., Liu X., Han J., Lü H., Lei C., Marshall F., Liu X. Evidence for early domestic yak, taurine cattle, and their hybrids on the Tibetan Plateau. Science Advances, 2023, 9(50): eadi6857 CrossRef
  37. Zupanič Pajnič I., Geršak Ž.M., Leskovar T., Črešnar M. Kinship analysis of 5th- to 6th-century skeletons of Romanized indigenous people from the Bled-Pristava archaeological site. Forensic Science International Genetics, 2023, 65: 102886 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)