PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2022.6.1147eng

UDC: 636.5.033:636.064.6:57.042:577.218

Acknowledgements:
Supported financially by the Russian Science Foundation, grant No. 22-16-00128 “Investigation of the toxic effect of glyphosates on the functional state of the bird intestinal microbial community, their growth and development, and the development of a biological product based on the glyphosate degrading strain”

 

INFLUENCE OF ANTIBIOTICS, GLYPHOSATE AND A Bacillus sp. STRAIN ON PRODUCTIVITY PERFORMANCE AND GENE EXPRESSION IN CROSS ROSS 308 BROILER CHICKENS (Gallus gallus L.)

D.G. Tyurina1, G.Yu. Laptev2, E.A. Yildirim1, 2, 3 , L.A. Ilyina1, 2, 3,
V.A. Filippova1, 2, 3, E.A. Brazhnik1, N.V. Tarlavin1, 4, K.A. Kalitkina1, 3,
E.S. Ponomareva1, A.V. Dubrovin1, N.I. Novikova1, D.A. Akhmatchin1,
V.V. Molotkov1, V.Kh. Melikidi1, E.P. Gorfunkel1

1JSC Biotrof, 8, lit. A/7-Н, ul. Malinovskaya, St. Petersburg—Pushkin, 196602 Russia, e-mail tiurina@biotrof.ru, deniz@biotrof.ru (✉ corresponding author), ilina@biotrof.ru, filippova@biotrof.ruvetdoktor@biotrof.ru, kate@biotrof.ru, dubrovin@biotrof.ru, novikova@biotrof.ru,
da@biotrof.ru, molotkov@biotrof.ru, veronika@biotrof.ru, elena@biotrof.ru;
2JSC Biotrof+, 19, korp. 1, Zagrebskii bulv., St. Petersburg, 192284 Russia, e-mail georg-laptev@rambler.ru;
3Saint Petersburg State Agrarian University, 2, Peterburgskoe sh., St. Petersburg—Pushkin, 196601 Russia, e-mail kseniya.k.a@biotrof.ru;
4Saint Petersburg State University of Veterinary Medicine, 5, ul. Chernigovskaya, St. Petersburg, 196084 Russia, e-mail tarlav1995@bk.ru

ORCID:
Tyurina D.G. orcid.org/0000-0001-9001-2432
Ponomareva E.S. orcid.org/0000-0002-4336-8273
Laptev G.Yu. orcid.org/0000-0002-8795-6659
Dubrovin A.V. orcid.org/0000-0001-8424-4114
Yildirim E.A. orcid.org/0000-0002-5846-4844
Novikova N.I. orcid.org/0000-0002-9647-4184
Ilyina L.A. orcid.org/0000-0003-2490-6942
Akhmatchin D.A. orcid.org/0000-0002-5264-1753
Filippova V.A. orcid.org/0000-0001-8789-9837
Molotkov V.V. orcid.org/0000-0002-6196-6226
Brazhnik E.A. orcid.org/0000-0003-2178-9330
Melikidi V.Kh. orcid.org/0000-0002-2883-3974
Tarlavin N.V. orcid.org/0000-0002-6474-9171
Gorfunkel E.P. orcid.org/ 0000-0002-6843-8733
Kalitkina K.A. orcid.org/0000-0002-9541-6839

Received August 5, 2022

The combination of antibiotics and pesticide residues can compromise the therapeutic and production benefits of antibiotics in the poultry industry. These effects may be reflected in changes of gene expression. The present work, for the first time, shows that the stimulation of poultry meat productivity with veterinary antibiotics enrofloxacin and colistin is probably associated with the induced expression of MYOG gene which is known to promote the development and differentiation of muscles, genes of antimicrobial (Gal9, Gal10) and antiviral (IRF7) protection, and pro-inflammatory genes IL6, IL8 and PTGS2. In addition, it was shown for the first time that glyphosate suppresses the expression of antimicrobial and antiviral genes in broilers of the Ross 308 cross. The aim of the study was to evaluate the change in the expression spectrum of key genes in broiler fed antibiotics, glyphosate and a biodestructor strain. The experiments were carried out on broilers of the Ross 308 cross from 1 to 35 days of age (the vivarium of BIOTROF+ LLC, 2022). The broilers were divided into 4 groups of 40 birds each. Group I (control) was fed a diet without additives, group II received a diet with the addition of veterinary antibiotics enrofloxacin and colistin; group III experienced dietary antibiotics and glyphosate; group IV received dietary antibiotics, glyphosate and a strain of the microorganism-biodestructor Bacillus sp. GL-8. Glyphosate content was measured by ELISA using a STAT FAX 303+ analyzer (Awareness Technology, LLC, USA) and a Glyphosate ELISA Microtiter Plate test system (Abraxis, USA). Reverse transcription quantitative PCR was performed to evaluate gene expression of the caecum and pectoral muscle tissues. Total RNA was isolated from samples using the Aurum™ Total RNA mini kit (Bio-Rad, Hercules, USA). Specific primers were selected for immunity genes IL6 (interleukin 6), IL8 (interleukin 8), IRF7 (interferon regulatory factor7), PTGS2 (prostaglandin-endoperoxide synthase), AvBD9 (Gal9) (β-defensin 9), AvBD10 (Gal10) (β-биотро,bjnhdefensin 10). For productivity genes, LGF-I (insulin-like growth factor 1), MYOG (myogenin), MYOZ2 (myosenin) and GSTA3 associated with resistance to toxic and medicinal substances were tested. Amplification reactions were carried out using SsoAdvanced™ Universal SYBR® Green Supermix (Bio-Rad, USA) using a DTlight amplifier (DNA-Technology, Russia). The body weight of broilers was assessed at 7, 14, 21, 28 and 35 days of age. Mathematical and statistical data processing was performed using multivariate analysis of variance in Microsoft Excel XP/2003, R-Studio (Version 1.1.453) (https://rstudio.com). The results showed a 4.8-23.3 %-stimulated productivity (p ≤ 0.05) of broilers from 14 days of life until the end of the experiment due to dietary antibiotics (group II vs. group I). At the end of the experiment, a negative effect of glyphosate on broiler productivity occurred (group III vs. group II, p ≤ 0.05). In broilers of groups II and IV, the expression of MYOG gene was 2.0 and 2.1 times higher than in group I (p ≤ 0.05). In the group fed glyphosate combined with antibiotics without a biodestructor strain added (group III), no activation of the MYOG gene expression occurred compared to group I (р ˃ 0.05), which indicates a negative effect of glyphosate on the expression of productivity genes. Glyphosate (group III) also acted as a suppressor of the antimicrobial and antiviral genes Gal9, Gal10 and IRF7 as compared to group II (p ≤ 0.05). The dietary biodestructor strain co-fed with glyphosate and antibiotics (group IV) provided an increase in Gal9 expression compared to group III (p ≤ 0.05). There was a tendency for a sharp increase in the expression of pro-inflammatory genes IL6, IL8 and PTGS2 (by 4.6, 11.2 and 6.6 times, respectively) in group II fed antibiotics vs. control group I (p ≤ 0.05). Our findings once again confirms the effect of antibiotics on immune processes. For GSTA3 gene associated with resistance to toxic and medicinal substances, it was shown that the introduction of antibiotics into feeds had some stimulating effect on the level of GSTA3 gene expression in the caeca tissues of broilers (group II vs. group I, p ≤ 0.05). Thus, the mechanism providing positive effects of antibiotics on productivity performance is probably partly due to the fact that they act as inducers of a set of important genes. Glyphosates fed in an amount corresponding to 1MPC reduced the stimulating effect of antibiotics. Glyphosates act, among other things, through the disruption of the activity of some key bird genes. The positive dynamics of the expression of various genes, including those involved in antimicrobial and antiviral defense, under the action of a biodestructor strain indicates the prospects for using probiotics as a means of smoothing out physiological imbalances caused by drugs and food contamination with toxic substances.

Keywords: mycotoxins, antibiotic, glyphosate, broilers, gene expression.

 

REFERENCES

  1. Danzeisen J.L., Clayton J.B., Huang H., Knights D., McComb B., Hayer S.S., Johnson T.J. Temporal relationships exist between cecum, ileum, and litter bacterial microbiomes in a commercial turkey flock, and subtherapeutic penicillin treatment impacts ileum bacterial community establishment. Frontiers in Environmental Science, 2015, 2: 56 CrossRef
  2. Pourabedin M., Guan L., Zhao X. Xylo-oligosaccharides and virginiamycin differentially modulate gut microbial composition in chickens. Microbiome, 2015, 3(1): 15 CrossRef
  3. Bohaychuk V.M., Gensler G.E., King R.K., Manninen K.I., Sorensen O., Wu J.T., Stiles M.E., McMullen L.M. Occurrence of pathogens in raw and ready-to-eat meat and poultry products collected from the retail marketplace in Edmonton, Alberta, Canada. Journal of Food Protection, 2006, 69(9): 2176-2182 CrossRef
  4. Chrząstek K., Wieliczko A. The influence of enrofloxacin, florfenicol, ceftiofur and E. coli LPS interaction on T and B cells subset in chicks. Veterinary Research Communications, 2015, 39(1): 53-60 CrossRef
  5. Khalifeh M.S., Amawi M.M., Abu-Basha E.A., Yonis I.B. Assessment of humoral and cellular-mediated immune response in chickens treated with tilmicosin, florfenicol, or enrofloxacin at the time of Newcastle disease vaccination. Poultry Science, 2009, 88(10): 2118-2124 CrossRef
  6. Ellakany H.F., Abu El-Azm I.M., Bekhit A.A., Shehawy M.M. Studies on the effects of enrofloxacin overdose on different health parameters in broiler chickens. Journal of Veterinary Medical Research, 2008, 18(1): 176-186 CrossRef
  7. Tokarzewski S. Influence of enrofloxacin and chloramphenicol on the level of IgY in serum and egg yolk after immunostimulation of hens with Salmonella enteritidis antigens. Polish Journal of Veterinary Sciences, 2002, 5(3): 151-158.
  8. Mehdi Y., Létourneau-Montminy M.P., Gaucher M.L., Chorfi Y., Suresh G., Rouissi T., Brar S.K., Côté C., Ramirez A.A., Godbout S. Use of antibiotics in broiler production: global impacts and alternatives. Animal Nutrition, 2018, 4(2): 170-178 CrossRef
  9. Eyssen H., de Somer P. The mode of action of antibiotics in stimulating growth of chicks. Journal of Experimental Medicine, 1963, 117(1): 127-38 CrossRef
  10. Lin J., Hunkapiller A.A., Layton A.C., Chang Y.J., Robbins K.R. Response of intestinal microbiota to antibiotic growth promoters in chickens. Foodborne Pathogens and Disease, 2013, 10(4): 331-337 CrossRef
  11. Jankowski J., Tykałowski B., Stępniowska A., Konieczka P., Koncicki A., Matusevičius P., Ognik K. Immune parameters in chickens treated with antibiotics and probiotics during early life. Animals (Basel), 2022, 12(9): 1133 CrossRef
  12. Yu M., Mu C., Yang Y., Zhang C., Su Y., Huang Z., Yu K., Zhu W. Increases in circulating amino acids with in-feed antibiotics correlated with gene expression of intestinal amino acid transporters in piglets. Amino Acids, 2017, 49(9): 1587-1599 CrossRef
  13. Lu P., Choi J., Yang C., Mogire M., Liu S., Lahaye L., Adewole D., Rodas-Gonzalez A., Yang C. Effects of antibiotic growth promoter and dietary protease on growth performance, apparent ileal digestibility, intestinal morphology, meat quality, and intestinal gene expression in broiler chickens: a comparison. Journal of Animal Science, 2020, 98(9): skaa254 CrossRef
  14. Tallentire C.W., Leinonen I., Kyriazakis I. Breeding for efficiency in the broiler chicken: a review. Agronomy for Sustainable Development, 2016, 36(4): 66 CrossRef
  15. Cuhra M., Bøhn T., Cuhra P. Glyphosate: Too much of a good thing? Frontiers in Environment Science, 2016, 4: e28 CrossRef
  16. Xu J., Smith S., Smith G., Wang W., Li Y. Glyphosate contamination in grains and foods: an overview. Food Control, 2019, 106(12): 106710 CrossRef
  17. Tarazona J.V., Court-Marques D., Tiramani M., Reich H., Pfeil R., Istace F., Crivellente F. Glyphosate toxicity and carcinogenicity: a review of the scientific basis of the European Union assessment and its differences with IARC. Archives of Toxicology, 2017, 91(11): 2723-2743 CrossRef
  18. Székács A., Darvas B. Re-registration challenges of glyphosate in the European Union. Frontiers in Environmental Science, 2018, 6: 35 CrossRef
  19. Oswald I.P. Role of intestinal epithelial cells in the innate immune defence of the pig intestine. Veterinary Research, 2006, 37(3): 359-368 CrossRef
  20. Nochi T., Jansen C.A., Toyomizu M., van Eden W. The well-developed mucosal immune systems of birds and mammals allow for similar approaches of mucosal vaccination in both types of animals. Frontiers in Nutrition, 2018, 5: 60 CrossRef
  21. Casteleyn C., Doom M., Lambrechts E., Van den Broeck W., Simoens P., Cornillie P. Locations of gut-associated lymphoid tissue in the 3-month-old chicken: a review. Avian Pathology, 2010, 39(3): 143-150 CrossRef
  22. Bar-Shira E., Sklan D., Friedman A. Establishment of immune competence in the avian GALT during the immediate post-hatch period. Developmental and Comparative Immunology, 2003, 27(2): 147-157 CrossRef
  23. Goitsuka R., Chen C.-L.H., Benyon L., Asano Y., Kitamura D., Cooper M.D. Chicken cathelicidin-B1, an antimicrobial guardian at the mucosal M cell gateway. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(38): 15063-15068 CrossRef
  24. Nile C.J., Townes C.L., Michailidis G., Hirst B.H., Hall J. Identification of chicken lysozyme g2 and its expression in the intestine. CMLS, Cell. Mol. Life Sci., 2004, 61(21): 2760-2766 CrossRef
  25. Cuperus T., van Dijk A., Dwars R.M., Haagsman H.P. Localization and developmental expression of two chicken host defense peptides: cathelicidin-2 and avian β-defensin 9. Developmental and Comparative Immunology, 2016, 61: 48-59 CrossRef
  26. Kurenbach B., Marjoshi D., Amábile-Cuevas C.F., Ferguson G.C., Godsoe W., Gibson P., Heinemann J.A. Sublethal exposure to commercial formulations of the herbicides dicamba, 2,4-dichlorophenoxyacetic acid, and glyphosate cause changes in antibiotic susceptibility in Escherichia coli and Salmonella enterica serovar Typhimurium. mBio, 2015, 6(2): e00009-15 CrossRef
  27. Ognik K., Konieczka P., Stępniowska A., Jankowski J. Oxidative and epigenetic changes and gut permeability response in early-treated chickens with antibiotic or probiotic. Animals, 2020, 10(12): 2204 CrossRef
  28. Krauze M., Abramowicz K., Ognik K. The effect of addition of probiotic bacteria (Bacillus subtilis or Enterococcus faecium) or phytobiotic containing cinnamon oil to drinking water on the health and performance of broiler. Annals of Animal Science, 2020, 20: 191-205 CrossRef
  29. Abramowicz K., Krauze M., Ognik K. Use of Bacillus subtilis PB6 enriched with choline to improve growth performance, immune status, histological parameters and intestinal microbiota of broiler chickens. Animal Production Science, 2020, 60(5): 625-634 CrossRef
  30. Chen Y., Wen C., Zhou Y. Dietary synbiotic incorporation as an alternative to antibiotic improves growth performance, intestinal morphology, immunity and antioxidant capacity of broilers. Journal of the Science of Food and Agriculture, 2018, 98(9): 3343-3350 CrossRef
  31. Łukasik J., Guo Q., Boulos L., Szajewska H., Johnston B.C. Probiotics for the prevention of antibiotic-associated adverse events in children-A scoping review to inform development of a core outcome set. PLoS ONE, 2020, 15(5): e0228824 CrossRef
  32. Cheng G., Hao H., Xie S., Wang X., Dai M., Huang L., Yuan Z. Antibiotic alternatives: The substitution of antibiotics in animal husbandry? Frontiers in Microbiology, 2014, 5: 217 CrossRef
  33. Nichols R.G., Davenport E.R. The relationship between the gut microbiome and host gene expression: a review. Human Genetics, 2021, 140(5): 747-760 CrossRef
  34. Rashidi N., Khatibjoo A., Taherpour K., Akbari-Gharaei M., Shirzadi H. Effects of licorice extract, probiotic, toxin binder and poultry litter biochar on performance, immune function, blood indices and liver histopathology of broilers exposed to aflatoxin-B1. Poultry Science, 2020, 99(11): 5896-5906 CrossRef
  35. Firdous S., Iqbal S., Anwar S. Optimization and modeling of glyphosate biodegradation by a novel Comamonas odontotermitis P2 through response surface methodology. Pedosphere, 2017, 30(5): 618-627 CrossRef
  36. European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes (ETS № 123) (Strasburg, 18.03.1986">CrossRef
  37. Egorov I.A., Manukyan V.A., Lenkova T.N., Okolelova T.M., Lukashenko V.S. Metodika provedeniya nauchnykh i proizvodstvennykh issledovaniy po kormleniyu sel’skokhozyaystvennoy ptitsy. Molekulyarno-geneticheskie metody opredeleniya mikroflory kishechnika /Pod redaktsiey V.I. Fisinina [Methodology for scientific and practical research on feeding poultry. Molecular genetic methods for determining the intestinal microflora. V.I. Fisinin (ed.)]. Sergiev Posad, 2013 (in Russ.).
  38. SanPiN 1.2.3685-21. Gigienicheskie normativy i trebovaniya k obespecheniyu bezopasnosti i (ili) bezvrednosti dlya cheloveka faktorov sredy obitaniya [SanPiN 1.2.3685-21. Hygienic standards and requirements for ensuring the safety and (or) harmlessness of environmental factors for humans](in Russ.).
  39. Zeka F., Vanderheyden K., De Smet E., Cuvelier C.A., Mestdagh P., Vandesompele J. Straightforward and sensitive RT-qPCR based gene expression analysis of FFPE samples. Scientific Reports, 2016, 6: 21418 CrossRef
  40. Yue H., Lei X.W., Yang F.L., Li M.Y., Tang C. Reference gene selection for normalization of PCR analysis in chicken embryo fibroblast infected with H5N1 AIV. Virol. Sin., 2010, 25(6): 425-431 CrossRef
  41. Meza Cerda M.I., Gray R., Higgins D.P. Cytokine RT-qPCR and ddPCR for immunological investigations of the endangered Australian sea lion (Neophoca cinerea) and other mammals. PeerJ, 2020, 8: e10306 CrossRef
  42. Laptev G.Y., Filippova V.A., Kochish I.I., Yildirim E.A., Ilina L.A., Dubrovin A.V., Brazhnik E.A., Novikova N.I., Novikova O.B., Dmitrieva M.E., Smolensky V.I., Surai P.F., Griffin D.K., Romanov M.N. Examination of the expression of immunity genes and bacterial profiles in the caecum of growing chickens infected with Salmonella enteritidis and fed a phytobiotic. Animals, 2019, 9(9): 615 CrossRef
  43. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408 CrossRef
  44. Imangulov Sh.A., Egorov I.A., Okolelova T.M., Tishenkov A.N., Lenkova T.N., Pan’kov P.N., Ezerskaya A.V., Ignatova G.V., Dogadaeva I.V., Avdonin B.F., Petrina Z.A., Borisova T.V., Gromova T.I. Metodika provedeniya nauchnykh i proizvodstvennykh issledovaniy po kormleniyu sel’skokhozyaystvennoy ptitsy: rekomendatsii /Pod redaktsiey V.I. Fisinina, Sh.A. Imangulova [Methodology for scientific and practical research on feeding poultry: recommendations. V.I. Fisinin, Sh.A. Imangulov (eds.)]. Sergiev Posad, 2004 (in Russ.).
  45. Hove-Jensen B., Zechel D.L., Jochimsen B. Utilization of glyphosate as phosphate source: Biochemistry and genetics of bacterial carbon-phosphorus lyase. Microbiol. Mol. Biol. Rev., 2014, 78(1): 176-197 CrossRef
  46. Zhan H., Feng Y., Fan X., Chen S. Recent advances in glyphosate biodegradation. Appl. Microbiol. Biotechnol., 2018, 102(12): 5033-5043 CrossRef
  47. Balthazor T.M., Hallas L.E. Glyphosate-degrading microorganisms from industrial activated sludge. Applied and Environmental Microbiology, 1986, 51(2): 432-434 CrossRef
  48. Średnicka P., Juszczuk-Kubiak E., Wójcicki M., Akimowicz M., Roszko M.Ł. Probiotics as a biological detoxification tool of food chemical contamination: a review. Food Chem. Toxicol., 2021, 153: 112306 CrossRef
  49. Pop O.L., Suharoschi R., Gabbianelli R. Biodetoxification and protective properties of probiotics. Microorganisms, 2022, 10(7): 1278 CrossRef
  50. Gill J.P.K., Sethi N., Mohan A., Datta S., Girdhar M. Glyphosate toxicity for animals. Environmental Chemistry Letters, 2018, 16(10): 401-426 CrossRef
  51. Manservisi F., Lesseur C., Panzacchi S., Mandrioli D., Falcioni L., Bua L., Manservigi M., Spinaci M., Galeati G., Mantovani A., Lorenzetti S., Miglio R., Andrade A.M., Kristensen D.M., Perry M.J., Swan S.H., Chen J., Belpoggi F. The Ramazzini Institute 13-week pilot study glyphosate-based herbicides administered at human-equivalent dose to Sprague Dawley rats: effects on development and endocrine system. Environmental Health, 2019, 18(1): 15 CrossRef
  52. Alarcón R., Ingaramo P.I., Rivera O.E., Dioguardi G.H., Repetti M.R., Demonte L.D., Milesi M.M., Varayoud J., Muñoz-de-Toro M., Luque E.H. Neonatal exposure to a glyphosate-based herbicide alters the histofunctional differentiation of the ovaries and uterus in lambs. Molecular and Cellular Endocrinology, 2019, 482: 45-56 CrossRef
  53. Van Bruggen A., He M.M., Shin K., Mai V., Jeong K.C., Finckh M.R., Morris J.G. Jr. Environmental and health effects of the herbicide glyphosate. Science of The Total Environment, 2018, 616-617: 255-268 CrossRef
  54. Leino L., Tall T., Helander M., Saloniemi I., Saikkonen K., Ruuskanen S., Puigbò P. Classification of glyphosate’s target enzyme (5-enolpyruvylshikimate-3-phosphate synthase). BioRxiv, 2020, 408: 124556 CrossRef
  55. Aitbali Y., Ba-M'hamed S., Elhidar N., Nafis A., Soraa N., Bennis M. Glyphosate based-herbicide exposure affects gut microbiota, anxiety and depression-like behaviors in mice. Neurotoxicology and Teratology, 2018, 67: 44-49 CrossRef
  56. Motta E.V.S., Raymann K., Moran N.A. Glyphosate perturbs the gut microbiota of honey bees. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(41): 10305-10310 CrossRef
  57. Mesnage R., Teixeira M., Mandrioli D., Falcioni L., Ducarmon Q.R., Zwittink R.D., Mazzacuva F., Caldwell A., Halket J., Amiel C., Panoff J.-M., Belpoggi F., Antoniou M.N. Use of shotgun metagenomics and metabolomics to evaluate the impact of glyphosate or roundup MON 52276 on the gut microbiota and serum metabolome of Sprague-Dawley rats. Environmental Health Perspectives, 2021, 129(1): CID 017005 CrossRef
  58. Faralli H., Dilworth E.J. Turning on myogenin in muscle: a paradigm for understanding mechanisms of tissue-specific gene expression. Comparative and Functional Genomics, 2012, 2012: 836374 CrossRef
  59. Xiao Y., Wu C., Li K., Gui G., Zhang G., Yang H. Association of growth rate with hormone levels and myogenic gene expression profile in broilers. Journal of Animal Science and Biotechnology, 2017, 8: 43 CrossRef
  60. Flynn J.E., Meadows E., Fiorotto M., Klein W.H. Myogenin regulates exercise capacity and skeletal muscle metabolism in the adult mouse. PLoS ONE, 2011, 5(10): e13535 CrossRef
  61. van Dijk A., Veldhuizen E.J.A., Haagsman H.P. Avian defensins. Veterinary Immunology and Immunopathology, 2008, 124(1-2): 1-18 CrossRef
  62. Yang D., Chertov O., Bykovskaia S.N., Chen Q., Buffo M.J., Shogan J., Anderson M., Schröder J.M., Wang J.M., Howard O.M., Oppenheim J.J. Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science, 1999, 286(5439): 525-528 CrossRef
  63. Niyonsaba F., Iwabuchi K., Matsuda H., Ogawa H., Nagaoka I. Epithelial cell-derived human beta-defensin-2 acts as a chemotaxin for mast cells through a pertussis toxin-sensitive and phospholipase C-dependent pathway. International Immunology, 2002, 14(4): 421-426 CrossRef
  64. Yacoub H.A., Elazzazy A.M., Abuzinadah O.A.H., Al-Hejin A.M., Mahmoud M.M., Harakeh S.M. Antimicrobial activities of chicken β-defensin (4 and 10) peptides against pathogenic bacteria and fungi. Frontiers in Cellular and Infection Microbiology, 2015, 5: 36 CrossRef
  65. Ning S., Pagano J.S., Barber G.N. IRF7: activation, regulation, modification and function. Genes and Immunity, 2011, 12(6): 399-414 CrossRef
  66. Haller O., Kochs G., Weber F. The interferon response circuit: induction and suppression by pathogenic viruses. Virology, 2006, 344(1): 119-130 CrossRef
  67. Terada T., Nii T., Isobe N., Yoshimura Y. Effect of antibiotic treatment on microbial composition and expression of antimicrobial peptides and cytokines in the chick cecum. Poultry Science, 2020, 99(7): 3385-3392 CrossRef
  68. Russo M., Humes S.T., Figueroa A.M., Tagmount A., Zhang P., Loguinov A., Lednicky J.A., Sabo-Attwood T., Vulpe C.D., Liu B. Organochlorine pesticide dieldrin suppresses cellular interferon-related antiviral gene expression. Toxicological Sciences, 2021, 182(2): 260-274 CrossRef
  69. Dalhoff A., Shalit I. Immunomodulatory effects of quinolones. The Lancet Infectious Diseases, 2003, 3(6): 359-371 CrossRef
  70. Moldawer L.L., Gelin J., Scherstén T., Lundholm K.G. Circulating interleukin 1 and tumor necrosis factor during inflammation. The American Journal of Physiology, 1987, 253(6): 922-928 CrossRef
  71. Cannon J.G., Tompkins R.G., Gelfand J.A., Michie H.R., Stanford G.G., van der Meer J.W., Endres S., Lonnemann G., Corsetti J., Chernow B., Wilmore D.W., Wolff S.M., Burke J.F., Dinarello C.A. Circulating IL-1 and TNF in septic shock and experimental endotoxin fever. The Journal of Infectious Diseases, 1990, 161(1): 79-84 CrossRef
  72. Darif D., Hammi I., Kihel A., El Idrissi Saik I., Guessous F., Akarid K. The pro-inflammatory cytokines in COVID-19 pathogenesis: What goes wrong? Microbial Pathogenesis, 2021, 153: 104799 CrossRef
  73. Broom L.J., Kogut M.H. Inflammation: friend or foe for animal production? Poultry Science, 2018, 97(2): 510-514 CrossRef
  74. Tracey K.J., Wei H., Manogue K.R., Fong Y., Hesse D.G., Nguyen H.T., Kuo G.C., Beutler B., Cotran R.S., Cerami A. Cachectin/tumor necrosis factor induces cachexia, anemia, and inflammation. The Journal of Experimental Medicine, 1988, 167(3): 1211-1227 CrossRef
  75. Fong Y., Moldawer L.L., Marano M., Wei H., Barber A., Manogue K., Tracey K.J., Kuo G. Cachectin/TNF or IL-1 alpha induces cachexia with redistribution of body proteins. The American Journal of Physiology, 1989, 256(3): R659-R665 CrossRef
  76. Prescott S.M., Fitzpatrick F.A. Cyclooxygenase-2 and carcinogenesis. Biochimica et Biophysica Acta, 2000, 1470(2): 69-78 CrossRef
  77. Thuresson E.D., Lakkides K.M., Rieke C.J., Sun Y., Wingerd B.A., Micielli R., Mulichak A.M., Malkowski M.G., Garavito R.M., Smith W.L. Prostaglandin Endoperoxide H Synthase-1: The functions of cyclooxygenase active site residues in the binding, positioning, and oxygenation of arachidonic acid 210. Journal of Biological Chemistry, 2001, 276(13): 10347-10357 CrossRef
  78. Binukumar B.K., Bal A., Gill K.D. Chronic dichlorvos exposure: microglial activation, proinflammatory cytokines and damage to nigrostriatal dopaminergic system. Neuromolecular Medicine, 2011, 13(4): 251-265 CrossRef
  79. Zhang Y., Ren M., Li J., Wei Q., Ren Z., Lv J., Niu F., Ren S. Does omethoate have the potential to cause insulin resistance? Environmental Toxicology and Pharmacology, 2014, 37(1): 284-290 CrossRef
  80. Wellen K.E., Hotamisligil G.S. Inflammation, stress, and diabetes. The Journal of Clinical Investigation, 2005, 115(5): 1111-1119 CrossRef
  81. Zhang K., Shen X., Wu J., Sakaki K., Saunders T., Rutkowski D.T., Back S.H., Kaufman R.J: Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell, 2006, 124(3): 587-599 CrossRef
  82. Yudkin J.S., Stehouwer C.D., Emeis J.J., Coppack S.W. C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19(4): 972-978 CrossRef
  83. Tan J., McKenzie C., Potamitis M., Thorburn A.N., Mackay C.R., Macia L. The role of short-chain fatty acids in health and disease. Advances in Immunology,2014, 121: 91-119 CrossRef
  84. Usami M., Kishimoto K., Ohata A., Miyoshi M., Aoyama M., Fueda Y., Kotani J. Butyrate and trichostatin A attenuate nuclear factor κB activation and tumor necrosis factor aα secretion and increase prostaglandin E2 secretion in human peripheral blood mononuclear cells. Nutrition Research, 2008, 28(5): 321-328 CrossRef
  85. Xu C., Li C.Y., Kong A.N. Induction of phase I, II and III drug metabolism/transport by xenobiotics. Archives of Pharmacal Research, 2005, 28(3): 249-268 CrossRef
  86. McLellan L.I., Judah D.J., Neal G.E., Hayes J.D. Regulation of aflatoxin B1-metabolizing aldehyde reductase and glutathione S-transferase by chemoprotectors. The Biochemical Journal, 1994, 300(1): 117-124 CrossRef
  87. Kelly V.P., Ellis E.M., Manson M.M., Chanas S.A., Moffat G.J., McLeod R., Judah D.J., Neal G.E., Hayes J.D. Chemoprevention of aflatoxin B1 hepatocarcinogenesis by coumarin, a natural benzopyrone that is a potent inducer of aflatoxin B1-aldehyde reductase, the glutathione S-transferase A5 and P1 subunits, and NAD(P)H:quinone oxidoreductase in rat liver. Cancer Research, 2000, 60(4): 957-969.
  88. Murcia H.W., Diaz G.J. Protective effect of glutathione S-transferase enzyme activity against aflatoxin B1 in poultry species: relationship between glutathione S-transferase enzyme kinetic parameters, and resistance to aflatoxin B1. Poultry Science, 2021, 100(8): 101235 CrossRef
  89. Meinl W., Sczesny S., Brigelius-Flohé R., Blaut M., Glatt H. Impact of gut microbiota on intestinal and hepatic levels of phase 2 xenobiotic-metabolizing enzymes in the rat. Drug Metabolism and Disposition, 2009, 37(6): 1179-1186 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)