PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2022.6.1083eng

UDC: 636.2:637.043:577.21

Acknowledgements:
Supported financially by Russian Science Foundation, project No. 21-76-20046

 

USING OF INFRARED HIGH-PERFORMANCE SPECTROMETRY DATA FOR GENOME-WIDE ASSOCIATIONS STUDY OF FATTY ACID COMPOSITION AND MILK COMPONENTS IN DAIRY CATTLE (Bos taurus)

A.A. Sermyagin, L.P. Ignatieva, I.A. Lashneva, A.A. Kositsin,
O.V. Kositsina, A.S. Abdelmanova, N.A. Zinovieva

Ernst Federal Research Center for Animal Husbandry, 60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail alex_sermyagin85@mail.ru (✉ corresponding author), ignatieva-lp@mail.ru, lashnevaira@gmail.com, ksicins@gmail.com, ok.kositsina@mail.ru, preevetic@mail.ru, n_zinovieva@mail.ru

ORCID:
Sermyagin A.A. orcid.org/0000-0002-1799-6014
Kositsina O.V. orcid.org/0000-0002-3637-4202
Ignatieva L.P. orcid.org/0000-0003-2625-6912
Abdelmanova A.S. orcid.org/0000-0003-4752-0727
Lashneva I.A. orcid.org/0000-0009-4276-8782
Zinovieva N.A. orcid.org/0000-0003-4017-6863
Kositsin A.A. orcid.org/0000-0001-8484-4902

Received September 30, 2022

Milk fat percentage is highly variabile and depends on environmental conditions which include feeding and farm technology, and on genetic factors such as breed and genotype features. The content of fatty acids (FA) is a biomarker for the physiological state of animals and a parameter of raw milk suitability for processing (yield of cheese, butter and cream). FA profile of mild in terms of C number, the chain length and saturation degree differs between individuals and at the population level. Therefore, the study of genetic and genomic variability of milk production traits to improve the efficiency of animal selection remains relevant. This study aimed at searching for genome-wide associations and polymorphisms in genes involved in milk fatty acid production. In the study, infrared spectrometry was used as an accurate and rapid method to analyze milk composition. Population variability of milk fatty acid profiles was studied using 36982 milk samples from Holsteinized Black-and-White and Holstein cows of 14 breeding herds from the Moscow region in 2017-2018. The heritability (h2) and correlation (rg) coefficients for cows’ milk components were calculated using REML (residual maximum likelihood) method with BLUPF90 family software. SNPs were detected for a dataset of Holsteinized Black-and-White cows from an experimental herd (the breeding farm Ladozhsky, branch of Ernst Federal Research Center for Animal Husbandry, Krasnodar Territory, 2020-2021). Milk composition was determined using an infrared spectroscopy-based automatic MilkoScan 7 DC analyzer (FOSS, Denmark). A group of 144 cows subjected to phenotyping for fatty acids and milk components were individually genotyped (Bovine GGP 150K biochip, Neogen, USA). Plink 1.9 software was applied to control genotyping quality (110884 SNPs) and to perform GWAS (genome-wide association study) analysis and multidimensional scaling (MDS). Searching genes by identified significant polymorphisms was performed using the bovine genome assembly Bos taurus UMD 3.1.1 (https://www.ncbi.nlm.nih.gov/assembly/) and the Ensembl genome browser. QTL annotation was carried out using the Animal QTLdb database. In general, milk fatty acids showed a heritability level that ranged from low to moderate, varying from h2 = 0.018 for polyunsaturated fatty acids to h2 = 0.125 for medium-chain FAs, h2 = 0.155 for long-chain FAs, h2 = 0.155 for myristic acid, h2 = 0.176 for monounsaturated FAs, and h2 = 0.196 for oleic acid. Visualizing experimental cows’ population structure by multidimensional scaling showed a moderate range of variability (PC1 = 7.82 %, PC2 = 4.65 %). For myristic and palmitic acids, common QTL clusters are identified on BTA5, BTA10, BTA14, BTA18, and BTA27. For stearic and oleic acids (as members of the long-chain FA family), similar location of QTLs is found on BTA9, BTA10, BTA11, BTA14, BTA17, BTA18, BTA19, BTA20, and BTA29. For short- and medium-chain FAs, there are associations revealed on BTA1, BTA5, BTA10, BTA11, BTA14, BTA18, BTA19, and BTA24. For long-chain FAs, QTLs are detected on BTA6, BTA7, BTA9, BTA10, BTA11, BTA17, BTA18, and BTA29. For short- and medium-chain FAs, saturated FAs, C14:0, C16:0, C18:0 and C18:1, the genes CACNA1C, GCH1, ATG14, KCNH5, PRKCE, CTNNA2, CYHR1, VPS28, DGAT1, ZC3H3, RHPN1, TSNARE1 are identified which form QTLs on BTA10, BTA11 and BTA14. Short- and medium-chain FAs, myristic and palmitic acids and saturated FAs show associations with polymorphisms in the MED12L, EPHB1, GRIN2B, PRMT8, ERC1, PELI2,ARHGAP39, MROH1, MAF1, GSDMD, and LY6D genes. For long-chain, monounsaturated fatty acids, stearic and oleic acids, there are significant associations with genesRPS6KA2, CPQ, CPE, FTO, FAT3, and LUZP2 which may be valuable for genetic improvement of dairy cattle. Continued study of the inheritance of cows’ milk fatty acids and other components is necessary to develop a strategy for breeding dairy cattle with a better fatty acid profile and milk composition.

Keywords: cow, fatty acids, milk components, heritability, GWAS, SNP, QTL, genes.

 

REFERENCES

  1. Sermyagin A., Zinov’eva N., Ermilov A., Yanchukov I. Zhivotnovodstvo Rossii, 2019, S1: 65-68 CrossRef (in Russ.).
  2. Appolonova I.A., Smirnova E.A., Nikanorova N.P. Pishchevaya promyshlennost’, 2012, 11: 72-45 (in Russ.).
  3. Lashneva I.A., Sermyagin A.A. Dostizheniya nauki i tekhniki APK, 2020, 3: 46-50 CrossRef
  4. Soyeurt H. Variation in fatty acid contents of milk and milk fat within and across breeds. Journal of Dairy Science, 2006, 89(12): 4858-4865 CrossRef
  5. DePeters E.J. Fatty acid and triglyceride composition of milk fat from lactating Holstein cows in response to supplemental canola oil. Journal of Dairy Science, 2001, 84(4): 929-936 CrossRef
  6. Collomb M. Impact of a basal diet of hay and fodder beet supplemented with rapeseed, linseed and sunflowerseed on the fatty acid composition of milk fat. International Dairy Journal, 2004, 14(6): 549-559 CrossRef
  7. GOST R 52253-2004 «Maslo i pasta maslyanaya iz korov’ego moloka. Obshchie tekhnicheskie usloviya» [GOST R 52253-2004 Butter and butter paste from cow's milk. General technical conditions]. Moscow, 2005 (in Russ.).
  8. Vanlierde A., Vanrobays M.-L., Dehareng F., Froidmon E., Soyeurt H., McParland S., Lewis E., Deighton M.H., Grandl F., Kreuzer M., Gredler B., Dardenne P., Gengler N. Hot topic: Innovative lactation-stage-dependent prediction of methane emissions from milk mid-infrared spectra. Journal of Dairy Science, 2015, 98(8): 5740-5747 CrossRef
  9. Shetty N., Difford G., Lassen J., Løvendahl P., Buitenhuis A.J. Predicting methane emissions of lactating Danish Holstein cows using Fourier transform mid-infrared spectroscopy of milk. Journal of Dairy Science, 2017, 100(11): 9052-9060 CrossRef
  10. Fragomeni B.O., Lourenco D.A.L., Masuda Y., Legarra A., Misztal I. Incorporation of causative quantitative trait nucleotides in single‑step GBLUP. Genetis Selection Evolution, 2017, 49: 59 CrossRef
  11. Smaragdov M.G. Genetika, 2008, 44(6): 829-834 (in Russ.).
  12. Smaragdov M.G. Genetika, 2011, 47(1): 126-132 (in Russ.).
  13. Smaragdov M.G. Genetika, 2012, 48(9): 1085-1090 (in Russ.).
  14. Sermyagin A.A., Gladyr’ E.A., Kharitonov S.N., Ermilov A.N., Strekozov N.I., Brem G., Zinovieva N.A. Genome-wide association study for milk production and reproduction traits in Russian Holstein cattle population. Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 2016, 51(2): 182-193 CrossRef
  15. Weller J.I., Ezra E., Ron M. Invited review: A perspective on the future of genomic selection in dairy cattle. Journal of Dairy Science, 2017, 100(11): 8633-8644 CrossRef
  16. Buitenhuis B, Janss LL, Poulsen NA, Larsen LB, Larsen MK, Sørensen P. Genome-wide association and biological pathway analysis for milk-fat composition in Danish Holstein and Danish Jersey cattle. BMC Genomics, 2014, 15(1): 1112 CrossRef
  17. Kawaguchi F., Kigoshi H., Fukushima M., Iwamoto E., Kobayashi E., Oyama K., Mannen H., Sasazaki S. Whole-genome resequencing to identify candidate genes for the QTL for oleic acid percentage in Japanese Black cattle. Animal Science Journal, 2019, 90(4): 467-472 CrossRef
  18. Palombo V., Milanesi M., Sgorlon S., Capomaccio S., Mele‖ M., Nicolazzi E., Ajmone-Marsan P., Pilla F., Stefanon B., D'Andrea D. Genome-wide association study of milk fatty acid composition in Italian Simmental and Italian Holstein cows using single nucleotide polymorphism arrays. Journal of Dairy Science, 2018, 101(12): 11004-11019 CrossRef
  19. LI C., Sun D., Zhang S., Wang S., Wu X., Zhang Q., Liu L., Li Y., Qiao L. Genome wide association study identifies 20 novel promising genes associated with milk fatty acid traits in Chinese Holstein. PLoS ONE, 2014, 9(5): e96186 CrossRef
  20. Gottardo P., Tiezzi F., Penasa M., Toffanin V., Cassandro M., De Marchi M. Milk fatty acids predicted by midinfrared spectroscopy in mixed dairy herds. Agricultural Conspectus Scientificus, 2013, 78(3): 263-266.
  21. Misztal I., Tsuruta S., Lourenço D., Aguilar I., Legarra A., Vitezica Z. Manual for BLUPF90 family of programs. Athens, University of Georgia, 2014.
  22. Masuda Y. Introduction to BLUPF90 suite programs. Standard Edition. University of Georgia, 2019.
  23. Chang C.C., Chow C.C., Tellier L.C.A.M., Vattikuti S., Purcell S.M., Lee J.J. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience, 2015, 4(1): s13742-015-0047-8 CrossRef
  24. Hu Z.L., Park C.A., Reecy J.M. Bringing the Animal QTLdb and CorrDB into the future: meeting new challenges and providing updated services. Nucleic Acids Research, 2022, 50(D1): D956-D961 CrossRef
  25. Sermyagin A.A., Lashneva I., Ignatieva L.P., Kositsin A., Gladyr E., Ermilov A., Yanchukov I., Zinovieva N.A. PSXI-3 genome-wide association study for MIR-predicted milk fatty acids composition in Russian Holstein cattle population. Journal of Animal Science, 2021, 99(Suppl_3): 245-246 CrossRef
  26. Huang H., Cao J., Hanif Q., Wang Y., Yu Y., Zhang S., Zhang Y. Genome-wide association study identifies energy metabolism genes for resistance to ketosis in Chinese Holstein cattle. Animal Genetics, 2019, 50(4): 376-380 CrossRef
  27. Schennink A., Stoop W.M., Visker M.H.P.W., Heck J.M.L., Bovenhuis H., Van Der Poel J.J., Van Valenberg H.J.F., Van Arendonk J.A.M. DGAT1 underlies large genetic variation in milk-fat composition of dairy cows. Animal Genetics, 2007, 38(5): 467-473 CrossRef
  28. Bovenhuis H., Visker M.H.P.W., Poulsen N.A., Sehested J., Van Valenberg H.J..F, Van Arendonk J.A.M., Larsen L.B., Buitenhuis A.J. Effects of the diacylglycerol o-acyltransferase 1 (DGAT1) K232A polymorphism on fatty acid, protein, and mineral composition of dairy cattle milk. Journal of Dairy Science, 2016, 99(4): 3113-3123 CrossRef
  29. Ilie D.E., Mizeranschi A.E., Mihali C.V., Neamț R.I., Goilean G.V., Georgescu O.I., Zaharie D., Carabaș M., Huțu I. Genome-wide association studies for milk somatic cell score in Romanian dairy cattle. Genes (Basel), 2021, 12(10): 1495 CrossRef
  30. Tiplady K.M., Lopdell T.J., Sherlock R.G., Johnson T.J.J., Spelman R.J., Harris B.L., Davis S.R., Littlejohn M.D., Garrick D.J. Comparison of the genetic characteristics of directly measured and Fourier-transform mid-infrared-predicted bovine milk fatty acids and proteins. Journal of Dairy Science, 2022, 105(12): 9763-9791 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)