PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2022.6.1117eng

UDC: 636.92:636.085.22:579:577.21

 

EFFECT OF A COMPLEX FEED ADDITIVE ON THE COMPOSITION AND FUNCTION OF THE Oryctolagus dominis CAECUM MICROBIOME

I.A. Narkevich1, E.A. Yildirim2, 3 , T.F. Chernikh1, L.A. Ilyina2, 3,
D.Yu. Ivkin1, V.A. Filippova2, 3, G.Yu. Laptev2, E.A. Brazhnick2,
E.S. Ponomareva2, A.V. Dubrovin2, E.V. Flisyuk1, K.A. Kalitkina2, 3,
S.P. Sklyarov3, V.Yu. Morozov3, N.I. Novikova2,  D.G. Tyurina2

1Saint Petersburg State Chemical Pharmaceutical University, 14, lit. A, ul. Professora Popova, St. Petersburg, 197376 Russia, e-mail igor.narkevich@pharminnotech.com, ode9ova.t@yandex.ru,
dimitry.ivkin@pharminnotech.com, Еelena.flisyk@pharminnotech.com;
2JSC Biotrof, 8, lit. A/7-Н, ul. Malinovskaya, St. Petersburg—Pushkin, 196602 Russia, e-mail deniz@biotrof.ru (✉ corresponding author), ilina@biotrof.ru, filippova@biotrof.ru, georg-laptev@rambler.ru, vetdoktor@biotrof.ru, kate@biotrof.ru, dubrovin@biotrof.ru, novikova@biotrof.ru, tiurina@biotrof.ru;
3Saint Petersburg State Agrarian University, 2, Peterburgskoe sh., St. Petersburg—Pushkin, 196601 Russia, e-mail kseniya.k.a@biotrof.ru, ssklyar@mail.ru, supermoroz@mail.ru

ORCID:
Narkevich I.A. orcid.org/0000-0002-5483-6626
Yildirim E.A. orcid.org/0000-0002-5846-5105
Chernikh T.F. orcid.org/0000-0003-4821-6890
Ilyina L.A. orcid.org/0000-0003-2789-4844
Ivkin D.Yu. orcid.org/0000-0001-92736867
Filippova V.A. orcid.org/0000-0001-8789-9837
Laptev G.Yu. orcid.org/0000-0002-8795-6659
Brazhnik Е.А. orcid.org/0000-0003-2178-9330
Ponomareva E.S. orcid.org/0000-0002-4336-8273
Dubrovin A.V. orcid.org/0000-0001-8424-4114
Flisyuk E.V. orcid.org/0000-0001-8077-2462
Kalitkina K.A. orcid.org/0000-0002-9541-6839
Sklyarov S.P. orcid.org/0000-0001-6417-5858
Morozov V.Yu. orcid.org/0000-0002-3688-1546
Novikova N.I. orcid.org/0000-0002-9647-4184
Tyurina D.G. orcid.org/0000-0001-9001-2432

Received October 5, 2022

There is a growing interest in the study of natural multicomponent feed additives to regulate gut microbiome composition and improve immune and physiological status of rabbits. In the present work, for the first time, it was bioinformatically found that a complex probiotic biological product affects the change in the predicted metabolic pathways of the rabbit intestinal microbiome. The aim of the work was to study the joint action of a complex containing minerals and a probiotic on physiological status, composition and functional potential of gut microbiome in rabbits. For the study (the vivarium of the FGBU VO SPKhFU of the Ministry of Health of Russia, St. Petersburg, 2021), ten Soviet chinchilla rabbits of 2.5 months of age (5.37-5.53 kg bw) were allocated to two groups of five rabbits each. Control group I received the recommended basal diet (BD, RAAS norms 2003), test group II was fed with the BD supplemented with a complex feed additive (30 mg per animal day-1) consisting of the microelement preparation Silaccess at 5 mg/kg of bodyweigh (LLC TECHNOLOG 2D, Russia) and the probiotic strain Bacillus subtilis 1-85. On days 30 and 60, the animals were weighed before morning feeding, and blood was sampled to evaluate natural resistance parameters (bactericidal function, including lysozyme activity, and phagocytic activity of neutrophils). Chyme samples of the caecum for microbiome studies aseptically collected at the end of the experiment were immediately placed in sterile plastic tubes. Total DNA was isolated using the Genomic DNA Purification Kit (Thermo Fisher Scientific, Inc., USA). The bacterial community was assessed by NGS sequencing on a MiSeq automated sequencer (Illumina, Inc., USA) using primers to the V3-V4 region of the 16S rRNA gene which allows us to identify microorganisms to the species level: the forward  primer 5´-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3´ and the reverse primer, 5´-GTCTCCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTAT-CTAATCC-3´. The reconstruction and prediction of the functional content of the metagenome was performed using the PICRUSt2 (v.2.3.0) software package (https://github.com/picrust/picrust2). Mathematical and statistical processing was carried out by the multivariate analysis of variance procedure using Microsoft Excel XP/2003, R-Studio (Version 1.1.453) (https://rstudio.com). In group II compared to control, the phagocytic index was higher (p ≤ 0.05) by 1.8 %, the phagocytic number by 32.3 % (p ≤ 0.05). NGS sequencing revealed the values of the Chao1, Shannon and Simpson biodiversity indices to be higher (p ≤ 0.05) in group II compared to group I. Taxonomic analysis of caecum microbial community disclosed 12 phyla of the kingdom Bacteria among which representatives of the phylum Firmicutes dominated (80.2±6.2 % in group I, 78.2±7.4 % in group II). In group II, there was a 1.3-2.6-fold increase in the abundance of phyla Verrucomicrobiota, Actinobacteriota, Patescibacteria, Proteobacteria, Desulfobacterota and a 4.8-fold decrease in the abundance of the phylum Campylobacterota (p ≤ 0.05). In the caecum of test rabbits, the genus Bacillus spp. increased 2.82 times compared to control (p ≤ 0.05). Staphylococcus sciuri was found in group I (0.075±0.006 %) but not in group II. Data processing using the PICRUSt2 software tool (v.2.3.0) revealed 370 predictable metabolic pathways in the rabbit gut microbial community, 36 of which differed (p ≤ 0.05) between the groups. In group II, the intestinal microbiome pathways related to the degradation of aromatic compounds and xenobiotics, protein, carbohydrate, and energy metabolism, alcohol biosynthesis, photorespiration, assimilation of formaldehyde, degradation of myo-, chiro- and scillo-inositol, cell wall synthesis and spore formation activated compared to group I (p ≤ 0.05). The dominant proportion (15 pathways) of enhanced potential metabolic pathways was associated with the degradation of aromatic compounds and xenobiotics. Thus, a complex dietary additive based on the probiotic strain of Bacillus subtilis 1-85 and microelements has a multiple positive effect both on gut microorganisms (fewer pathogens, metabolic regulation) and on the macroorganism (higher values of immunity parameters, a better growth performance of Soviet chinchilla rabbits).

Keywords: probiotic, trace elements, resistance, domestic rabbits, microbiome, NGS, metabolic pathways.

 

REFERENCES

  1. Lebas F., Coudert P., de Rochambeau H., Thébault R.G. The rabbit: husbandry, health, and production. Food and Agriculture Organization of the United Nations, Rome, 1997.
  2. Cullere M., Dalle Zotte A. Rabbit meat production and consumption: State of knowledge and future perspectives. Meat Science, 2018, 143: 137-146 CrossRef
  3. Usachev I.I. Vestnik Buryatskoy gosudarstvennoy sel’skokhozyaystvennoy akademii im. V.R. Filippova,2008, 1: 26-29 (in Russ.).
  4. McNitt J.I., Lukefahr S.D., Cheeke P.R., Patton N.M. Rabbit production. CABI, Wallingford, UK, 2013.
  5. Cotozzolo E., Cremonesi P., Curone G., Menchetti L., Riva F., Biscarini F., Marongiu M.L., Castrica M., Castiglioni B., Miraglia D., Luridiana S., Brecchia G. Characterization of bacterial microbiota composition along the gastrointestinal tract in rabbits. Animals, 2020, 11(1): 31 CrossRef
  6. Flint H.J., Scott K.P., Louis P., Duncan S.H. The role of the gut microbiota in nutrition and health. Nature Reviews Gastroenterology & Hepatology, 2012, 9(10): 577-589 CrossRef
  7. Heinrichs J., Lesmeister K.E. Rumen development in the dairy calf. Advances in Dairy Technology, 2005, 17: 179-187.
  8. Drouilhet L., Achard C.S., Zemb O., Molette C., Gidenne T., Larzul C., Ruesche J., Tircazes A., Segura M., Bouchez T., Theau-Clément M., Joly T., Balmisse E., Garreau H., Gilbert H. Direct and correlated responses to selection in two lines of rabbits selected for feed efficiency under ad libitum and restricted feeding: I. Production traits and gut microbiota characteristics. Journal of Animal Science, 2016, 94(1): 38-48 CrossRef
  9. Monteils V., Cauquil L., Combes S., Godon J.J., Gidenne T. Potential core species and satellite species in the bacterial community within the rabbit caecum. FEMS Microbiology Ecology, 2008, 66(3): 620-629 CrossRef
  10. Massip K., Combes S., Cauquil L., Zemb O., Gidenne T. High-throughput 16SDNA sequencing for phylogenetic affiliation of the caecal bacterial community in the rabbit: Impact of the hygiene of housing and of the intake level. Proc. VIIIth INRA-RRI Symposium on Gut Microbiology. Gut microbiota: friend or foe? Clermont-Ferrand, France, 2012: 57.
  11. Velasco-Galilea M., Piles M., Vinas M., Rafel O., González-Rodríguez O., Guivernau M., Sanchez J.P. Rabbit microbiota changes throughout the intestinal tract. Front. Microbiol., 2018, 9: 2144 CrossRef
  12. Xing Y., Liu J., Lu F., Wang L., Li Y., Ouyang C. Dynamic distribution of gallbladder microbiota in rabbit at different ages and health states. PLoS ONE,2019, 14(2): e0211828 CrossRef
  13. Fang S., Chen X., Pan J., Chen Q., Zhou L., Wang C., Xiao T., Gan Q. F. Dynamic distribution of gut microbiota in meat rabbits at different growth stages and relationship with average daily gain (ADG). BMC Microbiol., 2020, 20(1): 116 CrossRef
  14. Gouet P.H., Fonty G. Changes in the digestive microflora of holoxenic rabbits from birth until adulthood. Annales de Biologie Animale Biochimie Biophysique, 1979, 19(3A): 553-566.
  15. Carabaño R., Badiola I., Licois D., Gidenne T. The digestive ecosystem and its control through nutritional or feeding strategies. In: Recent advances in rabbit sciences. L. Maertens, P. Coudert (eds.). ILVO, Melle, Belgium, 2006: 211-228.
  16. Marlier D., Dewrée R., Lassence C., Licois D., Mainil J., Coudert P., Meulemans L., Ducatelle R., Vindevogel H. Infectious agents associated with epizootic rabbit enteropathy: isolation and attempts to reproduce the syndrome. Journal of Veterinary Diagnostic Investigation, 2006, 172(3): 493-500 CrossRef
  17. Lebas F. Entérocolite: situation en juin 2001. Cuniculture, 2001, 28: 183-188.
  18. Lord B. Gastrointestinal disease in rabbits 2. Intestinal diseases. In Practice,2012, 34(3): 156-162 CrossRef
  19. Olkowski A.A., Wojnarowicz C., Chirino-Trejo M., Drew M.D. Responses of broiler chickens orally challenged with Clostridium perfringens isolated from field cases of necrotic enteritis.Research in Veterinary Science,2006, 81(1): 99-108 CrossRef
  20. Lu H., Adedokun S.A., Adeola L., Ajuwon K. Anti-inflammatory effects of non-antibiotic alternatives in Coccidia challenged broiler chickens. Journal of Poultry Science, 2014, 51(1): 14-21 CrossRef
  21. Tang T., Li Y., Wang J., Elzo M. A., Shao J., Li Y., Xia S., Fan H., Jia X., Lai S. Untargeted metabolomics reveals intestinal pathogenesis and self-repair in rabbits fed an antibiotic-free diet. Animals (Basel),2021, 11(6): 1560 CrossRef
  22. Deng Z., Han D., Wang Y., Wang Q., Yan X., Wang S., Liu X., Song W., Ma Y. Lactobacillus casei protects intestinal mucosa from damage in chicks caused by Salmonella pullorum via regulating immunity and the Wnt signaling pathway and maintaining the abundance of gut microbiota. Poultry Science, 2021, 100(8): 101283 CrossRef
  23. Liu B., Liu Q.-M., Li G.-L., Sun L.C., Gao Y.-Y., Zhang Y.-F., Liu H., Cao M.-J., Liu G.-M. The anti-diarrhea activity of red algae-originated sulphated polysaccharides on ETEC-K88 infected mice. RSC Advances, 2019, 9: 2360-2370 CrossRef
  24. Karamzadeh-Dehaghani A., Towhidi A., Zhandi M., Mojgani N., Fouladi-Nashta A. Combined effect of probiotics and specific immunoglobulin Y directed against Escherichia coli on growth performance, diarrhea incidence, and immune system in calves. Animal, 2021, 15(2): 100124 CrossRef
  25. Abdel-Wareth A.A.A., Elkhateeb F.S.O., Ismail Z.S.H., Ghazalah A.A., Lohakare J. Combined effects of fenugreek seeds and probiotics on growth performance, nutrient digestibility, carcass criteria, and serum hormones in growing rabbits. Livestock Science, 2021, 251: 104616 CrossRef
  26. Lam Phuoc T., Jamikorn U. Effects of probiotic supplement (Bacillus subtilis and Lactobacillus acidophilus) on feed efficiency, growth performance, and microbial population of weaning rabbits. Asian-Australas. J. Anim. Sci., 2016, 30(2): 198-205 CrossRef
  27. Dimova N., Laleva S., Slavova P., Popova Y., Mihaylova M., Pacinovski N. Effect of probiotic “Zoovit” on productivity of rabbits. Macedonian Journal of Animal Scienc,2017, 7: 123-127.
  28. Fathi M., Abdelsalam M., Al-Homidan I., Ebeid T., El-Zarei M., Abou-Emera O. Effect of probiotic supplementation and genotype on growth performance, carcass traits, hematological parameters and immunity of growing rabbits under hot environmental conditions. Anim. Sci. J., 2017, 88(10): 1644-1650 CrossRef
  29. El-Shafei A.A., Younis T.M., Al-Gamal M.A., Hesham A.M. Impact of probiotic (Lactobacillus planterium L) supplementation on productive and physiological performance of growing rabbits under Egyptian conditions. Egyptian Journal of Rabbit Science, 2019, 29(1): 125-148 CrossRef
  30. Wlazło Ł., Kowalska D., Bielański P., Chmielowiec-Korzeniowska A., Ossowski M., Łukaszewicz M., Czech A., Nowakowicz-Dębek B. Effect of fermented rapeseed meal on the gastrointestinal microbiota and immune status of rabbit (Oryctolagus cuniculus). Animals (Basel), 2021, 11(3): 716 CrossRef
  31. Shen X.M., Cui H.X., Xu X.R. Orally administered Lactobacillus casei exhibited several probiotic properties in artificially suckling rabbits. Asian-Australas. J. Anim. Sci.,2020, 33: 1352-1359 CrossRef
  32. Yyldyrym E.A., Laptev G.Yu., Il’ina L.A., Dunyashev T.P., Tyurina D.G., Filippova V.A., Brazhnik E.A., Tarlavin N.V., Dubrovin A.V., Novikova N.I., Soldatova V.V., Zaytsev S.Yu. The influence of a dietary Enterococcus faecium strain-based additive on the taxonomic and functional characteristics of the rumen microbiota of lactating cows. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2020, 55(6): 1204-1219 CrossRef
  33. Ye X., Zhou L., Zhang Y., Xue S., Gan Q. F., Fang S. Effect of host breeds on gut microbiome and serum metabolome in meat rabbits. BMC Vet. Res.,2021, 17(1): 24 CrossRef
  34. Alekseeva L.V., Arsanukaev D.L. Materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Konkurentosposobnost’ i innovatsionnaya aktivnost’ APK regionov» [Proc. Int. Conf. «Competitiveness and innovative activity of the agro-industrial complex of the Russian Federation regions»]. Tver’, 2018: 89-92 (in Russ.).
  35. Alekseeva L.V., Makarevskiy A.A., Subbotenko T.V. Materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Nauchnye prioritety v APK» [Proc. Int. Conf. «Scientific priorities in the agro-industrial complex»]. Tver’, 2019: 146-148 (in Russ.).
  36. Alekseeva L.V., Luk’yanov A.A., Belyakova S.V. Materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Konkurentosposobnost’ i innovatsionnaya aktivnost’ APK regionov» [Proc. Int. Conf. «Competitiveness and innovative activity of the agro-industrial complex of the Russian Federation regions»]. Tver’, 2017: 132-134 (in Russ.).
  37. Guide for the care and use of laboratory animals. The National Academy press, Washington, D.C,2011.
  38. Alekseeva L.V., Demenik F.G., Savina A.S. Vestnik tverskogo gosudarstvennogo universiteta. Seriya: biologiya i еkologiya, 2018, 2: 274-285 (in Russ.).
  39. Karput’ I.M. Immunologiya i immunopatologiya bolezney molodnyaka [Immunology and immunopathology of diseased young animals]. Minsk, 1993 (in Russ.).
  40. Dorofeychuk V.G. Laboratornoe delo, 1968, 1: 67 (in Russ.).
  41. Douglas G.M., Maffei V.J., Zaneveld J.R. Yurgel S.N., Brown J.R., Taylor C.M., Huttenhower C., Langille M.G.I. PICRUSt2 for prediction of metagenome functions. Nature Biotechnology, 2020, 38: 685-688 CrossRef
  42. Tracey K.J., Wei H., Manogue K.R., Fong Y., Hesse D.G., Nguyen H.T., Kuo G.C., Beutler B., Cotran R.S., Cerami A. Cachectin/tumor necrosis factor induces cachexia, anemia, and inflammation. The Journal of Experimental Medicine, 1988, 167(3): 1211-1227 CrossRef
  43. Ovsyannikov A.G. Anemiya krolikov (еtiopatogenez, diagnostika, lechenie). Kandidatskaya dissertatsiya [Anemia in rabbits (etiopathogenesis, diagnosis, and treatment. PhD Thesis]. St. Petersburg, 2019 (in Russ.).
  44. Glagoleva O.N. Vesti MANЕB v Omskoy oblasti, 2013, 2(2): 13-15 (in Russ.).
  45. Kraemer K., Zimmermann B. Nutritional anemia. Sightand Life Press, Basel, Switzerland,2007.
  46. Levy O. Antimicrobial proteins and peptides of blood: templates for novel antimicrobial agents. Blood, 2000, 96(8): 2664-2672.
  47. Modlin R.L., Brightbill H.D., Godowski P.J. The toll of innate immunity on microbial pathogens. N. Engl. J. Med., 1999, 340(23): 1834-1835 CrossRef
  48. Hoffmann J.A. Innate immunity of insects. Current Opinion in Immunology, 1995, 7(1): 4-10 CrossRef
  49. Hoffmann J.A., Reichhart J.M., Hetru C. Innate immunity in higher insects. Current Opinion in Immunology,1996, 8(1): 8-13 CrossRef
  50. Nichols R.G., Davenport E.R. The relationship between the gut microbiome and host gene expression: a review. Human Genetics, 2021, 140(5): 747-760 CrossRef
  51. Mohamed A.F., El-Sayiad G.A., Reda F.M., Ashour E.A. Effects of breed, probiotic and their in-teraction on growth performance, carcass traits and blood profile of growing rabbits. Zagazig Journal of Agricultural Research, 2017, 44(1): 215-227 CrossRef
  52. Lukác N., Massányi P. Vplyv stopoýtch prvkov na imunitný systém [Effects of trace elements on the immune system]. Epidemiol. Mikrobiol. Imunol., 2007, 56(1): 3-9.
  53. López-Alonso M. Trace minerals and livestock: not too much not too little. International Scholarly Research Notices, 2012, 2012: 704825 CrossRef
  54. Kim H.B., Borewicz K., White B.A., Singer R.S., Sreevatsan S., Tu Z.J., Isaacsona R.E. Microbial shifts in the swine distal gut in response to the treatment with antimicrobial growth promoter, tylosin. Proceedings of the National Academy of Sciences, 2012, 109(38): 15485-15490 CrossRef
  55. Pajarillo E.A., Chae J.P., Balolong M.P., Kim H.B., Seo K.-S., Kang D.-K. Characterization of the fecal microbial communities of duroc pigs using 16S rRNA gene pyrosequencing. Asian-Australas. J. Anim. Sci., 2015, 28(4): 584-591 CrossRef
  56. den Besten G., van Eunen K., Groen A.K., Venema K., Reijngoud D.-J., Bakker B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research,2013, 54(9): 2325-2340 CrossRef
  57. Abecia L., Rodríguez-Romero N., Yañez-Ruiz D.R., Fondevila M. Biodiversity and fermentative activity of caecal microbial communities in wild and farm rabbits from Spain. Anaerobe, 2012, 18(3): 344-349 CrossRef
  58. Fu X., Zeng B., Wang P., Wang L., Wen B., Li Y., Liu H., Bai S., Jia G. Microbiome of total versus live bacteria in the gut of Rex rabbits. Front. Microbiol., 2018, 9: 733 CrossRef
  59. Crowley E.J., King J.M., Wilkinson T., Worgan H.J., Huson K.M., Rose M.T., McEwan N.R. Comparison microbial population in rabbits and guinea pigs by next generation sequencing. PLoS ONE, 2017, 12(2): e0165779 CrossRef
  60. Bangsgaard Bendtsen K.M., Krych L., Sørensen D.B., Pang W., Nielsen D.S., Josefsen K., Hansen L.H., Sørensen S.J., Hansen A.K. Gut microbiota composition is correlated to grid floor induced stress and behavior in the BALB/c mouse. PLoS ONE,2012, 7(10): e46231 CrossRef
  61. An C., Kuda T., Yazaki T., Takahashi H., Kimura B. FLX pyrosequencing analysis of the effects of the brown-algal fermentable polysaccharides alginate and laminaran on rat cecal microbiotas. Applied and Environmental Microbiology, 2013, 79(3): 860-866 CrossRef
  62. Zhou K. Strategies to promote abundance of Akkermansia muciniphila, an emerging probiotics in the gut, evidence from dietary intervention studies. Journal of Functional Foods, 2017, 33: 194-201 CrossRef
  63. Glukhova A.A., Karabanova A.A., Yakushev A.V., Semenyuk I.I., Boykova Y.V., Malkina N.D., Efimenko T.A., Ivankova T.D., Terekhova L.P., Efremenkova O.V. Antibiotic activity of actinobacteria from the digestive tract of millipede Nedyopus dawydoffiae (Diplopoda). Antibiotics,2018, 7(4): 94 CrossRef
  64. Hotchkiss C.E., Shames B., Perkins S.E., Fox J.G. Proliferative enteropathy of rabbits: the intracellular Campylobacter-like organism is closely related to Lawsonia intracellularis. Lab. Anim. Sci., 1996, 46(6): 623-627.
  65. Corcoran B.M., Stanton C., Fitzgerald G.F., Ross R.P. Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Applied and Environmental Microbiology, 2005, 71(6): 3060-3067 CrossRef
  66. Ghelardi E., Celandroni F., Salvetti S., Gueye S.A., Lupetti A., Senesi S. Survival and persistence of Bacillus clausii in the human gastrointestinal tract following oral administration as spore-based probiotic formulation. J. Appl. Microbiol., 2015, 119(2): 552-559 CrossRef
  67. Bäuerl C., Collado M.C., Zúñiga M., Blas E., Pérez Martínez G. Changes in cecal microbiota and mucosal gene expression revealed new aspects of epizootic rabbit enteropathy. PLoS ONE, 2014, 9(8): e105707 CrossRef
  68. Combes S., Gidenne T., Cauquil L., Bouchez O., Fortun-Lamothe L. Coprophagous behavior of rabbit pups affects implantation of cecal microbiota and health status. Journal of Animal Science, 2014, 92(2): 652-665 CrossRef
  69. Fekete S. Recent findings and future perspectives of digestive physiology in rabbits: a review. Acta Vet. Hung., 1989, 37(3): 265-279.
  70. Hu X., Zheng B., Jiang H., Kang Y., Cao Q., Ning H., Shang J. Draft genome sequence of Staphylococcus sciuri subsp. sciuri strain Z8, isolated from human skin. Genome Announcements, 2015, 3(4): e00714-15 CrossRef
  71. Hermans K., Devriese L.A., Haesebrouck F. Rabbit staphylococcosis: difficult solutions for serious problems. Veterinary Microbiology, 2003, 91(1): 57-64 CrossRef
  72. Dakić I., Morrison D., Vuković D., Savić B., Shittu A., Ježek P., Hauschild T., Stepanović S. Isolation and molecular characterization of Staphylococcus sciuri in the hospital environment. Journal of Clinical Microbiology, 2005, 43(6): 2782-2785 CrossRef
  73. Mayer J., Huhn T., Habeck M., Denger K., Hollemeyer K., Cook A.M. 2,3-Dihydroxypropane-1-sulfonate degraded by Cupriavidus pinatubonensis JMP134: purification of dihydroxypropanesulfonate 3-dehydrogenase. Microbiology,2010, 156(5): 1556-1564 CrossRef
  74. Yurimoto H., Hirai R., Yasueda H., Mitsui R., Sakai Y., Kato N. The ribulose monophosphate pathway operon encoding formaldehyde fixation in a thermotolerant methylotroph, Bacillus brevis S1. FEMS Microbiol. Lett., 2002, 214(2): 189-193 CrossRef
  75. Arora P.K., Srivastava A., Singh V.P. Diversity of 4-chloro-2-nitrophenol-degrading bacteria in a waste water sample. Journal of Chemistry, 2016, 2016: 7589068 CrossRef
  76. Singh B., Singh K. Bacillus: as bioremediator agent of major environmental pollutants. In: Bacilli and agrobiotechnology. M. Islam, M. Rahman, P. Pandey, C. Jha, A. Aeron (eds.). Springer, Cham, 2016: 35-55 CrossRef
  77. Yoshida K.I., Aoyama D., Ishio I., Shibayama T., Fujita Y. Organization and transcription of the myo-inositol operon, iol, of Bacillus subtilis. Journal of Bacteriology, 1997, 179(14): 4591-4598 CrossRef
  78. Yoshida K.-I., Yamamoto Y., Omae K., Yamamoto M., Fujita Y. Identification of two myo-inositol transporter genes of Bacillus subtilis. Journal of Bacteriology, 2002, 184(4): 983-991 CrossRef
  79. Abe Y., Sakoda T., Goto H., Ikeda S., Sukemori S. Cecotrophy contribute methionine and threonine requirements of rabbits. Journal of Pet Animal Nutrition,2014, 17: 6-12 CrossRef
  80. Gidenne T., Kerdiles V., Jehl N., Arveux P., Eckenfelder B., Briens C., Stephan S., Fortune H., Montessuy S., Muraz G. Protein replacement by digestible fibre in the diet of growing rabbits. 2: Impact on performances, digestive health and nitrogen output. Animal Feed Science and Technology, 2013, 183(3-4): 142-150 CrossRef
  81. Martínez-Vallespín B., Martínez-Paredes E., Ródenas L., Moya V.J., Cervera C., Pascual J.J., Blas E. Partial replacement of starch with acid detergent fibre and/or neutral detergent soluble fibre at two protein levels: Effects on ileal apparent digestibility and caecal environment of growing rabbits. Livestock Science,2013, 154(1-3): 123-130 CrossRef
  82. Trocino A., García J., Carabaño R., Xiccato G. A meta-analysis on the role of soluble fibre in diets for growing rabbits. World Rabbit Sci., 2013, 21(1): 1-15 CrossRef
  83. Partridge G.G., Garthwaite P.H., Findlay M. Protein and energy retention by growing rabbits offered diets with increasing proportions of fibre. Journal of Agricultural Science, 1989, 112(2): 171-178 CrossRef
  84. Shin D., Chang S.Y., Bogere P., Won K., Choi J.Y., Choi Y.J., Lee H.K., Hur J., Park B.Y., Kim Y., Heo J. Beneficial roles of probiotics on the modulation of gut microbiota and immune response in pigs. PLoS ONE, 2019, 14(8): e0220843 CrossRef
  85. Khan S., Chousalkar K.K. Functional enrichment of gut microbiome by early supplementation of Bacillus based probiotic in cage free hens: a field study. Animal Microbiome, 2021, 3(1): 50 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)