БИОЛОГИЯ РАСТЕНИЙ
БИОЛОГИЯ ЖИВОТНЫХ
ПЕЧАТНАЯ ВЕРСИЯ
ЭЛЕКТРОННАЯ ВЕРСИЯ
 
КАК ПОДАТЬ РУКОПИСЬ
 
КАРТА САЙТА
НА ГЛАВНУЮ

 

 

 

 

doi: 10.15389/agrobiology.2020.6.1220rus

УДК 636.5.033:636.087.8:579.6:577.2

 

СРАВНИТЕЛЬНАЯ ОЦЕНКА ВЛИЯНИЯ ВИРДЖИНИАМИЦИНА
И ПРОБИОТИКА НА СОСТАВ КИШЕЧНОГО МИКРОБИОМА
И ЗООТЕХНИЧЕСКИЕ ПОКАЗАТЕЛИ ЦЫПЛЯТ-БРОЙЛЕРОВ
(Gallus gallus L.)

Д.Г. ТЮРИНА1, Г.Ю. ЛАПЕВ1, Е.А. ЙЫЛДЫРЫМ1 ✉,
Л.А. ИЛЬИНА1, В.А. ФИЛИППОВА1, Е.А. БРАЖНИК1,
Н.В. ТАРЛАВИН1, Е.П. ГОРФУНКЕЛЬ1, А.В. ДУБРОВИН1,
Н.И. НОВИКОВА1, Т.П. ДУНЯШЕВ1, А.А. ГРОЗИНА2

На сегодняшний день существует большой интерес к разработке кормовых экологически безопасных добавок для птицеводства, способных положительно модулировать состав микробиоты и контролировать патогенные микроорганизмы, представляя собой достойную альтернативу антибиотикам. Однако очень мало работ посвящено сопоставлению действия пробиотиков и антибиотиков на структуру микробиома кишечника у бройлеров. В настоящем исследовании мы сравнили состав микробиоты кишечника и зоотехнические показатели у цыплят кросса Cobb 500 в стартерный, ростовой и финишный периоды при добавлении в рацион пробиотика (Bacillus subtilis в составе Целлобактерина®-Т) или антибиотика (Stafac® 110 на основе вирджиниамицина) и показали, что штамм B. subtilis ускоряет становление кишечной микрофлоры. Пробиотик также снижает численность микроорганизмов семейства Campylobacteriaceae, к которому относятся многие виды возбудителей гастроэнтеритов, и повышает переваримость клетчатки. Структуру микробиома в содержимом слепых отростков кишечника изучали методами количественной ПЦР и T-RFLP (terminal restriction fragment length polymorphism) анализа. У цыплят в возрасте 14 сут общая численность бактерий в химусе слепой кишки при введении в рацион антибиотика Stafac® 110 была выше в 9,1 раза (p ≤ 0,05), B. subtilis — в 54,2 раза (p ≤ 0,001) по сравнению с контролем, что указывает на быструю колонизацию микрофлорой желудочно-кишечного тракта у особей из опытных групп. Результаты T-RFLP-анализа показали, что микрофлора в химусе слепых отростков кишечника цыплят на уровне филумов была представлена двумя доминирующими таксонами — Firmicutes и Proteobacteria, в меньшей степени — филумами Actinobacteria, Bacteroidetes и Fusobacteria. Были выявлены таксоны, которые играют важную роль в переваривании некрахмалистых полисахаридов, связанных с синтезом короткоцепочечных жирных кислот, в вытеснении патогенной микрофлоры благодаря продукции бактериоцинов, а также в снижении рН химуса вследствие синтеза органических кислот. Введение в рацион кормового антибиотика оказало преимущественно позитивное влияние на структуру микробиома: возросла доля целлюлозолитических форм и бактерий класса Clostridia (p ≤ 0,05), участвующих в синтезе органических кислот. Сходные позитивные изменения в микробном сообществе отмечали и при интродукции пробиотического штамма B. subtilis, в частности, по сравнению с контролем повышалось обилие бактерий класса Clostridia (p ≤ 0,05). На 14-е сут выращивания применение антибиотика и интродукция пробиотического штамма снизили численность микроорганизмов семейства Campylobacteriaceae (p ≤ 0,05), включающего многие патогенные виды. У 36-суточных курочек, в рацион которых вводили антибиотик Stafac® 110, отмечено увеличение живой массы (с 1845,8±20,9 до 1936,4±17,9 г, р = 0,046). У пробиотического штамма бактерий подобного эффекта не наблюдали (несмотря на восстановление микрофлоры слепых отростков кишечника). Переваримость клетчатки в группе, получавшей штамм B. subtilis, повышалась по сравнению с контролем на 7,1 % (р = 0,0027), кормовой антибиотика — на 2,3 % (р = 0,047), что может быть связано с деятельностью целлюлозолитической микрофлоры. Таким образом, введение в рацион цыплят-бройлеров пробиотического штамма бактерий B. subtilis с целью восстановления микрофлоры и повышения переваримости клетчатки может быть эффективной альтернативой применению кормового антибиотику Stafac ®110 на основе вирджиниамицина.

Ключевые слова: цыплята-бройлеры, Cobb 500, пробиотик, Bacillus subtilis, Stafac® 110, T-RFLP-анализ, микробиом, Firmicutes, Proteobacteria, Clostridia, Campylobacteriaceae.

 

 

THE IMPACT OF VIRGINIAMICIN AND PROBIOTICS ON INTESTINAL MICROBIOME AND GROWTH PERFORMANCE TRAITS OF CHICKEN (Gallus gallus L.) BROILERS

D.G. Tyurina1, G.Yu. Laptev1, E.A. Yildirim1 ✉, L.A. Ilina1,
V.A. Filippova1, E.A. Brazhnik1, N.V. Tarlavin1, E.P. Gorfunkel1,
A.V. Dubrovin1, N.I. Novikova1, T.P. Dunyashev1, A.A. Grozina2

Today, there is great interest in the development of environmentally friendly feed additives for poultry farming as a worthy alternative to antibiotics capable of positively modulating the microbiota to control pathogenic microorganisms. However, very few studies have been devoted to comparing the effects of probiotics and antibiotics on the structure of the gut microbiome in broilers. In this study, we compared the composition of the intestinal microbiota and zootechnical parameters in chickens of the Cobb 500 cross during the starter, growth and finishing periods when a probiotic (Bacillus subtilis in the composition of Cellobacterin®-T) or an antibiotic (Stafac® 110 based on virginiamycin) was added to the diet and showed that the B. subtilis strain accelerates the formation of intestinal microflora. The probiotic also reduces the number of microorganisms of the Campylobacteriaceae family which includes many types of gastroenteritis pathogens, and also increases the digestibility of fiber. T-RFLP analysis and qPCR method were used to assess changes in the intestinal microbiota of Cobb 500 broiler chickens fed a Bacillus subtilis-based dietary probiotic and virginiamycin-based dietary antibiotic Stafac® 110. On day 14, the total counts of cecal bacteria, as compared to control, were 9.1 times higher (p ≤ 0.05) in broilers fed Stafac® 110, and 54.2 times higher (p ≤ 0.001) when fed B. subtilis preparation. This indicates rapid microbial colonization of gastrointestinal tract of the chickens fed Stafac® 110 and B. subtilis. T-RFLP analysis revealed two dominant cecal phyla, Firmicutes and Proteobacteria, while phyla Actinobacteria, Bacteroidetes, and Fusobacteriawere less abundant. The taxa are detected which ferment non-starch polysaccharides to produce short-chain fatty acids, inhibit the competing pathogens due to production of bacteriocins, and acidize the chyme as synthesize organic acids. Administration of the dietary antibiotic mostly positively influences the cecal microbiota, e.g., the cellulolytic bacteria and Clostridia forms involved in the synthesis of organic acids became more abundant (p ≤ 0.05). Similar beneficial effects, e.g., an increase in Clostridia counts (p ≤ 0.05) compared to control, occurred when the probiotic strain was administered. On day 14 of rearing, the dietary antibiotic and probiotic reduced abundance of Campylobacteriaceae family comprising gastroenteritis pathogens (p ≤ 0.05) when compared to control. An increase in bodyweight as compared to control (from 1845.8±20.9 to 1936.4±17.9 g, p = 0.046) occurred in 36-day-old chickens fed Stafac® 110 but not the probiotic strain but not the probiotic strain, despite recovery of gut microbiota in the chickens fed B. subtilis. A 7.1 % increase infiber digestibility (p = 0.0027) occurred in broilers fed dietary probiotic and a 2.3 % increase (p = 0.047) in those fed the dietary antibiotic, which may be due to the action of cellulolytic microorganisms. Therefore, a dietary B. subtilis-based probiotic which promotes recovery of gut microbiota and increases fiber digestibility in feeds for broiler chickens can be an effective alternative to the virginiamycin-based antibiotic Stafac® 110.

Keywords: broiler chickens, Cobb 500, probiotic, Bacillus subtilis, Stafac® 110, T-RFLP analysis, microbiome, Firmicutes, Proteobacteria, Clostridia, Campylobacteriaceae.

 

1ООО «БИОТРОФ+»,
192284 Россия, г. Санкт-Петербург, Загребский б-р, 19, корп. 1,
e-mail: tirina@biotrof.ru, georg-laptev@rambler.ru, deniz@biotrof.ru✉, ilina@biotrof.ru, filippova@biotrof.ru, bea@biotrof.ru, taгlav1995@biotrof.гu, elena@biotгof.ru, dubrowin.a.v@yandex.ru, novikova@biotтof.ru,
timur@biotrof.ru;
2ФНЦ Всероссийский научно-исследовательский
и технологический институт птицеводства РАН,

141311 Россия, Московская обл., г. Сергиев Посад,
ул. Птицеградская, 10,
e-mail: Alena_fisinina@mail.ru

Поступила в редакцию
12 мая 2020 года

 

назад в начало

 


СОДЕРЖАНИЕ

 

 

Полный текст PDF

Полный текст HTML