PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2020.6.1107eng

UDC: 636.4:636.087.7

Acknowledgements:
Supported financially from Russian Science Foundation, project No. 19-16-00068

 

USE OF ANTIOXIDANTS AS ADAPTOGENS FED TO PIGS (Sus scrofa domesticus Erxleben, 1777) (META-ANALYSIS)

A.A. Semenova1, T.G. Kuznetsova1, V.V. Nasonova1,
R.V. Nekrasov2, N.V. Bogolyubova2, E.Yu. Tsis2

1Gorbatov Federal Center for Food Systems RAS, 26, ul. Talalikhina, Moscow,109316 Russia, e-mail semmm@mail.ru, labsens@mail.ru, vvnas@mail.ru;
2Ernst Federal Science Center for Animal Husbandry, 60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail nek_roman@mail.ru ( corresponding author), 652202@mail.ru, tsis-elen@yandex.ru

ORCID:
Semenova A.A. orcid.org/0000-0002-4372-6448
Nekrasov R.V. orcid.org/0000-0003-4242-2239
Kuznetsova T.G. orcid.org/0000-0002-5164-1807
Bogolyubova N.V. orcid.org/0000-0002-0520-7022
Nasonova V.V. orcid.org/0000-0001-7625-3838
Tsis E.Yu. orcid.org/0000-0003-1988-1189

Received August 10, 2020

 

The meat flash quality is basically dependent on muscle tissue characteristics. Feeding disorders and stresses can cause myopathy, a destabilizing factor of farm animal meat quality. The muscle tissue injury preventing is of particular interest as it can improve lifetime meat quality formation. Dietary enrichment of farm animal nutrition with natural adaptogens and antioxidants offers potential to reduce myopathies of various etiologies. This paper is an overview of nutrition factors as protective agents under stress loads and myopathies in intensively growing pigs. Dietary adaptogens, e.g. selenium, tocopherol, quercetins, etc., inhibit peroxidation of lipids, generation of reactive oxygen species and are important for the control of glycolysis and oxidative stress. Most adaptogens are antioxidants, they have a beneficial effect on the cardiovascular system, including blood capillaries, prevent damage to cell membranes caused by free radicals and apoptosis. The beneficial effects of vitamin E-enriched diets (from 10 to 1000 mg/kg feed, approximately 200 mg/kg mainly) on porcine meat quality characteristics have been well studied in pig breeds and breed combinations during various periods of growing. However, no effect of dietary vitamin E on the growth rate of animals has also been reported. Feed enrichment with dietary tocopherol leads to its deposition in all tissues and organs, primarily in the blood, liver, heart, and in muscle and fat tissues. Vitamin E has a membrane-stabilizing effect, reduces oxidation of membrane lipids, increases the total amount of fatty acids in mitochondria, antioxidant capacity and muscle glycogen content. It has been shown that in pigs fed diets supplemented with vitamin E during fattening phase the vitamin E deposition level in meat is higher. This, in turn, improves meat taste and flavor, reduces the smell characteristic of reheated dishes, does not change the aldehyde profile of meat volatiles and reduces the accumulation of nitrogenous volatiles resulted from the breakdown of meat proteins during storage, including in a vacuum. Less attention is paid to administration of selenium as an adaptogen. It was shown that selenium combined with higher vitamin E level can neutralize the adverse consequences of hyperthermia in growing pigs and increase free fatty acid content in fat. The organic form of dietary selenium improves the antioxidant status of muscles in pigs. However, selenium has different effects on the oxidation of proteins and lipids during meat storage. In some studies, selenium reduced oxidation; in others, on the contrary, it was proved to be unable to inhibit the accumulation of products of oxidative damage. Two flavonoids quercetin and dihydroquercetin (Taxifolin) are well known for their antioxidant properties. The research articles are mainly deal with quercetin and dihydroquercetin bioavailability and deposition, the impact on antioxidant status and reproductive functions of sows, leveling transportation stress, and pork quality. Quercetin supplements have a pronounced effect at 25-50 mg/kg live weight, dihydroquercetin supplements at 1-3.5 mg/kg live weight. The flavonoids are effective when administered both during the fattening period and before slaughter or transportation. Despite the encouraging reports, little research has focused on the role of these flavonoids in the pork meat quality formation, so further study requires. Quercetin when fed up to 6 months at 2 % of the diet reduced damage to dystrophic skeletal muscle fibers in laboratory animals due to a decrease in reduced production of hydrogen peroxide in mitochondria. Adaptogens and directed muscle tissue development regulators are proposed as potentially key supplements ensuring meat quality under intensive animal husbandry, therefore, further search for and study of bioactive substances which can protect muscle tissues from damaging factors are required.

Keywords: pigs, stress, pork, myopathy, adaptogen, antioxidant, selenium, vitamin E, quercetin, dihydroquercetin.

 

REFERENCES

  1. Listrat A., Lebret B., Louveau I., Astruc T., Bonnet M., Lefaucheur L., Bugeon J. Comment la structure et la composition du muscle déterminent la qualité des viands ou chairs? INRAE Productions Animales, 2015, 28(2): 125-136 CrossRef
  2. Studentsov E.P., Ramsh S.M., Kazurova N.G., Neporozhneva O.V., Garabadzhiu A.V., Kochina T.A., Voronkov M.G., Kuznetsov V.A., Krivorotov D.V. Obzory po klinicheskoi farmakologii i lekarstvennoi terapii, 2013, 4(11): 3-43 (in Russ.).
  3. Lebold K.M., Löhr C.V., Barton C.L., Miller G.W., Labut E.M., Tanguay R.L., Traber M.G. Chronic vitamin E deficiency promotes vitamin C deficiency in zebrafish leading to degenerative myopathy and impaired swimming behavior. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2013, 157(4): 382-389 CrossRef
  4. Lauridsen C., Jensen C.L., Krogh S., Skibsted L.H., Bertelsen G. Influence of supranutritional vitamin E and copper on a-tocopherol deposition and susceptibility to lipid oxidation of porcine membranal fractions of M. Psoas major and M. Longissimus dorsi. Meat Science, 2000, 54 (4): 377-384 CrossRef
  5. Bosi P., Cacciavillani J.A., Casini L., Lo Fiego D.P., Marchetti M., Mattuzzi S. Effects of dietary high-oleic acid sunflower oil, copper and vitamin E levels on the fatty acid composition and the quality of dry cured Parma ham. Meat Science, 2000, 54(2): 119-126 CrossRef
  6. O’Sullivan M.G., Byrne D.V., Stagsted J., Andersen H.J., Martens M. Sensory colour assessment of fresh meat from pigs supplemented with iron and vitamin E. Meat Science, 2002, 60 (3): 253-265 CrossRef.
  7. Isabel B., Lopez-Bote C.J., la Hoz L., Timón M., García C., Ruiz J. Effects of feeding elevated concentrations of monounsaturated fatty acids and vitamin E to swine on characteristics of dry cured hams. Meat Science, 2003, 64(4): 475-482 CrossRef
  8. Daza A., Rey A.I., Ruiz J., Lopez-Bote C.J. Effects of feeding in free-range conditions stability or in confinement with different dietary MUFA/PUFA ratios and a-tocopheryl acetate, on antioxidants accumulation and oxidative stability in Iberian pigs. Meat Science, 2005, 69 (1): 151-163 CrossRef
  9. Sárraga C., Guàrdia M.D., Díaz I., Guerrero L., García Regueiro J.A., Arnau J. Nutritional and sensory quality of porcine raw meat, cooked ham and dry-cured shoulder as affected by dietary enrichment with docosahexaenoic acid (DHA) and a-tocopheryl acetate. Meat Science, 2007, 76(2): 377-384 CrossRef
  10. Boler D.D., Gabriel S.R., Yang H., Balsbaugh R., Mahan D.C., Brewer M.S., McKeith F.K., Killefer J. Effect of different dietary levels of natural-source vitamin E in grow-finish pigs on pork quality and shelf life. Meat Science, 2009, 83(4): 723-730 CrossRef
  11. Zou Y., Xiang Q., Wang J., Wei H., Peng J. Effects of oregano essential oil or quercetin supplementation on body weight loss, carcass characteristics, meat quality and antioxidant status in finishing pigs under transport stress. Livestock Science, 2016, 192: 33-38 CrossRef
  12. Zou Y., Hu M.X., Zhang T., Wei H.K., Zhou Y.F., Zhou Z.X., Peng J. Effects of dietary oregano essential oil and vitamin E supplementation on meat quality, stress response and intestinal morphology in pigs following transport stress. Journal of Veterinary Medical Science, 2017, 79(2): 328-335 CrossRef
  13. Rosenvold K., Lærke H.N., Jensen S.K., Karlsson A.H., Lundström K., Andersen H.J. Manipulation of critical quality indicators and attributes in pork through vitamin E supplementation, muscle glycogen reducing finishing feeding and pre-slaughter stress. Meat Science, 2002, 62(4): 485-496 CrossRef
  14. Geesink G.H., Buren R.G.C., Savenije B., Verstegen M.W.A., Ducro B.J., van der Palen J.G.P., Hemke G. Short-term feeding strategies and pork quality. Meat Science, 2004, 67(1): 1-6 CrossRef
  15. Gebert S., Eichenberger B., Pfirter H.P., Wenk C. Influence of different dietary vitamin C levels on vitamin E and C content and oxidative stability in various tissues and stored m. Longissimus dorsi of growing pigs. Meat Science, 2006, 73(2): 362-367 CrossRef
  16. Wang H., Wang L.S., Shi B.-M., Shan A.-S. Effects of dietary corn dried distillers grains with solubles and vitamin E on growth performance, meat quality, fatty acid profiles, and pork shelf life of finishing pigs. Livestock Science, 2012, 149(1-2): 155-166 CrossRef
  17. Huang C., Chiba L.I., Magee W.E., Wang Y., Griffing D.A., Torres I.M., Rodning S.P., Bratcher C.L., Bergen W.G., Spangler E.A. Effect of flaxseed oil, animal fat, and vitamin E supplementation on growth performance, serum metabolites, and carcass characteristics of finisher pigs, and physical characteristics of pork. Livestock Science, 2019, 220: 143-151 CrossRef
  18. Dineen N.M., Kerry J.P., Lynch P.B., Buckley D.J., Morrissey P.A., Arendt E.K. Reduced nitrite levels and dietary a-tocopheryl acetate supplementation: effects on the colour and oxidative stability of cooked hams. Meat Science, 2000, 55(4): 475-482 CrossRef
  19. Lauridsen C., Theil P.K., Jensen S.K. Composition of a-tocopherol and fatty acids in porcine tissues after dietary supplementation with vitamin E and different fat sources. Animal Feed Science and Technology, 2013, 179 (1-4): 93-102 CrossRef
  20. Cava R., Ventanas J., Tejeda J.F., Ruiz J., Antequera T. Effect of free-range rearing and a-tocopherol and copper supplementation on fatty acid profiles and susceptibility to lipid oxidation of fresh meat from Iberian pigs. Food Chemistry, 2000, 68(1): 51-59 CrossRef
  21. Phillips A.L., Faustman C., Lynch M.P., Govoni K.E., Hoagland T.A., Zinn S.A. Effect of dietary a-tocopherol supplementation on color and lipid stability in pork. Meat Science, 2001, 58(4): 389-393 CrossRef
  22. O’Sullivan M.G., Byrne D.V., Nielsen J.H., Andersen H.J., Martens M. Sensory and chemical assessment of pork supplemented with iron and vitamin E. Meat Science, 2003, 64(2): 175-189 (doi :10.1016/S0309-1740(02)00177-8">CrossRef
  23. Lahucky R., Bahelka I., Kuechenmeister U., Vasickova K., Nuernberg K., Ender K., Nuernberg G. Effects of dietary supplementation of vitamins D3 and E on quality characteristics of pigs and longissimus muscle antioxidative capacity. Meat Science, 2007, 77(2): 264-268 CrossRef
  24. Realini C.E., Pérez-Juan M., Gou P., Díaz I., Sárraga C., Gatellier P., García-Regueiro J.A. Characterization of Longissimus thoracis, Semitendinosus and Masseter muscles and relationships with technological quality in pigs. 2. Composition of muscles. Meat Science, 2013, 94(3): 417-423 CrossRef
  25. Kim J.C., Jose C.G., Trezona M., Moore K.L., Pluske J.R., Mullan B.P. Supra-nutritional vitamin E supplementation for 28 days before slaughter maximises muscle vitamin E concentration in finisher pigs. Meat Science, 2015, 110: 270-277 CrossRef
  26. Cheah K.S., Cheah A.M., Krausgrill D.I. Effect of dietary supplementation of vitamin E on pig meat quality. Meat Science, 1995, 39(2): 255-264 CrossRef
  27. Rossi R., Ratti S., Pastorelli G., Crotti A., Corino C. The effect of dietary vitamin E and verbascoside on meat quality and oxidative stability of Longissimus Dorsi muscle in medium-heavy pigs. Food Research International, 2014, 65(Part A): 88-94 CrossRef
  28. Jin C.-L., Gao C.-Q., Wang Q., Zhang Z.-M., Xu Y.-L., Li H.-C., Yan H.-C., Wang X.-Q. Effects of pioglitazone hydrochloride and vitamin E on meat quality, antioxidant status and fatty acid profiles in finishing pigs. Meat Science, 2018, 145: 340-346 CrossRef
  29. Meineri G., Medana C., Giancotti V., Visentin S., Giorgio Peiretti P. Effect of dietary supplementation of vitamin E in pigs to prevent the formation of carcinogenic substances in meat products. Journal of Food Composition and Analysis, 2013, 30(2): 67-72 CrossRef
  30. Rajauria G., Draper J., McDonnell M., O’Doherty J.V. Effect of dietary seaweed extracts, galactooligosaccharide and vitamin E supplementation on meat quality parameters in finisher pigs. Innovative Food Science & Emerging Technologies, 2016, 37(Part B): 269-275 CrossRef
  31. Mahan D.C., Cline T.R., Richert B. Effects of dietary levels of selenium-enriched yeast and sodium selenite as selenium sources fed to growing-finishing pigs on performance, tissue selenium, serum glutathione peroxidase activity, carcass characteristics, and loin quality. Journal of Animal Science, 1999, 77(8): 2172-2179 CrossRef
  32. Silva V.A., Bertechini A.G., Clemente A.H.S., de Freitas L.F.V.B., Nogueira B.R.F., de Oliveira B.L., Ramos A.L.S. Different levels of selenomethionine on the meat quality and selenium deposition in tissue of finishing pigs. Journal of Animal Physiology and Animal Nutrition, 2019, 103(6): 1866-1874 CrossRef 
  33. Morel P.C.H., Leong J., Nuijten W.G.M., Purchas R.W., Wilkinson B.H.P. Effect of lipid type on growth performance, meat quality and the content of long chain n-3 fatty acids in pork meat. Meat Science, 2013, 95(2): 151-159 CrossRef
  34. Zhan X.A., Wang M., Zhao R.Q., Li W. F., Xu Z.R. Effects of different selenium source on selenium distribution, loin quality and antioxidant status in finishing pigs. Animal Feed Science and Technology, 2007, 132(3-4): 202-211 CrossRef
  35. Jiang J., Tang X., Xue Y., Lin G., Xiong Y.L. Dietary linseed oil supplemented with organic selenium improved the fatty acid nutritional profile, muscular selenium deposition, water retention, and tenderness of fresh pork. Meat Science, 2017, 131: 99-106 CrossRef
  36. Falk M., Bernhoft A., Framstad T., Salbu B., Wisløff H., Kortner T.M., Kristoffersen A.B., Oropeza-Moe M.O. Effects of dietary sodium selenite and organic selenium sources on immune and inflammatory responses and selenium deposition in growing pigs. Journal of Trace Elements in Medicine and Biology, 2018, 50: 527-536 CrossRef
  37. Son A.R., Jeong J.Y., Park K.R., Kim M., Lee S.D., Yoo J.H., Do Y.J., Reddy K.E., Lee H.J. Effects of graded concentrations of supplemental selenium on selenium concentrations in tissues and prediction equations for estimating dietary selenium intake in pigs. Peer J., 2018, 6: e5791 CrossRef
  38. Calvo L., Segura J., Toldrá F., Flores M., Rodríguez A.I., López-Bote C.J., Rey A.I. Meat quality, free fatty acid concentration, and oxidative stability of pork from animals fed diets containing different sources of selenium. Food Science and Technology International, 2017, 23(8): 716-728 CrossRef
  39. Calvo L., Toldrá F., Aristoy M.C., López-Bote C.J., Rey A.I. Effect of dietary organic selenium on muscle proteolytic activity and water-holding capacity in pork. Meat Science, 2016, 121: 1-11 CrossRef
  40. Vitali M., Sirri R., Zappaterra M., Zambonelli P., Giannini G., Lo Fiego D.P., Davoli R. Functional analysis finds differences on the muscle transcriptome of pigs fed an n-3 PUFA-enriched diet with or without antioxidant supplementations. PLoS ONE, 2019, 14(2): e0212449 CrossRef
  41. Liu F., Cottrell J.J., Leury B.J., Chauhan S., Celi P., Abrasaldo A., Dunshea F.R. Selenium or vitamin E mitigates hyperthermia in growing pigs. Journal of Nutrition & Intermediary Metabolism, 2014, 1: 22 CrossRef
  42. Calvo L., Toldrá F., Rodríguez A.I., López-Bote C., Rey A.I. Effect of dietary selenium source (organic vs. mineral) and muscle pH on meat quality characteristics of pigs. Food Science & Nutrition, 2017, 5(1): 94-102 CrossRef
  43. Mateo R.D., Spallholz J.E., Elder R., Yoon I., Kim S.W. Efficacy of dietary selenium sources on growth and carcass characteristics of growing-finishing pigs fed diets containing high endogenous selenium. Journal of Animal Science, 2007, 85(5): 1177-1183 CrossRef
  44. Li J.-G., Zhou J.-C., Zhao H., Lei X.-G., Xia X.-J., Gao G., Wang K.-N. Enhanced water-holding capacity of meat was associated with increased Sepw1 gene expression in pigs fed selenium-enriched yeast. Meat Science, 2011, 87(2): 95-100 CrossRef
  45. Chen J., Tian M., Guan W., Wen T., Yang F., Chen F., Zhang S., Song J., Ren C., Zhang Y., Song H. Increasing selenium supplementation to a moderately-reduced energy and protein diet improves antioxidant status and meat quality without affecting growth performance in finishing pigs. Journal of Trace Elements in Medicine and Biology, 2019, 56: 38-45 CrossRef
  46. Nuernberg K., Kuechenmeister U., Kuhn G., Nuernberg G., Winnefeld K., Ender K., Cogan U., Mokady S. Influence of dietary vitamin E and selenium on muscle fatty acid composition in pigs. Food Research International, 2002, 35(6): 505-510 CrossRef
  47. Godziszewska J., Guzek D., Głąbska D., Jóźwik A., Brodowska M., Głąbski K., ZarodkiewiczM., Gantner M., Wierzbicka A. Nutrient oxidation in pork loin is influenced by feed supplementation and packing methods. Journal of Food Composition and Analysis, 2017, 56: 18-24 CrossRef
  48. Pogorzelska-Nowicka E., Godziszewska J., Horbańczuk J.O., Atanasov A.G., Wierzbicka A. The Effect of PUFA-rich plant oils and bioactive compounds supplementation in pig diet on color parameters and myoglobin status in long-frozen pork meat. Molecules, 2018, 23(5): 1005 CrossRef
  49. Morel P.C., Janz J.A., Zou M., Purchas R.W., Hendriks W.H., Wilkinson B.H. The influence of diets supplemented with conjugated linoleic acid, selenium, and vitamin E, with or without animal protein, on the quality of pork from female pigs. Journal of Animal Science, 2008, 86(5): 1145-1155 CrossRef
  50. Wojtasik-Kalinowska I., Guzek D., Górska-Horczyczak E., Głąbska D., Brodowska M., Sun D.-W., Wierzbicka A. Volatile compounds and fatty acids profile in Longissimus dorsi muscle from pigs fed with feed containing bioactive components. LWT — Food Science and Technology, 2016, 67: 112-117 CrossRef
  51. Cermak R., Landgraf S., Wolffram S. The bioavailability of quercetin in pigs depends on the glycoside moiety and on dietary factors. The Journal of Nutrition, 2003, 133(9): 2802-2807 CrossRef
  52. Lesser S., Cermac R., Wolffram S. Bioavailability of quercetin in pigs is influenced by the dietary fat content. The Journal of Nutrition, 2004, 134(6): 1508-1511 CrossRef
  53. De Boer V.C.J., Dihal A.A., van der Woude H., Arts I.C.W., Wolffram S., Alink G.M., Rietjens I.M.C.M., Keijer J., Hollman P.C.H. Tissue distribution of quercetin in rats and pigs. The Journal of Nutrition, 2005, 135(7): 1718-1725 CrossRef
  54. Percival S.S. Commentary on: Tissue distribution of quercetin in rats and pigs. The Journal of Nutrition, 2005, 135(7): 1617-1618 CrossRef
  55. Bieger J., Cermak R., Blank R., de Boer V.C.J., Hollman P.C.H., Kamphues J., Wolffram S. Tissue distribution of quercetin in pigs after long-term dietary supplementation. The Journal of Nutrition, 2008, 138(8): 1417-1420 CrossRef
  56. Luehring M., Blank R., Wolffram S. Vitamin E-sparing and vitamin E-independent antioxidative effects of the flavonol quercetin in growing pigs. Animal Feed Science and Technology, 2011, 169(3-4): 199-207 CrossRef
  57. Santini S.E., Basini G., Bnssolaty S., Grasselli F. The phytoestrogen quercetin impairs steroidogenesis and angioqenesis in swine granulose cells in vitro. BioMed Research International, 2009, 2009: Article ID 419891 CrossRef
  58. Kang J.T., Moon J.H., Choi J.Y., Park S.J., Kim S.J., Saadeldin I.M., Lee B.C. Effect of antioxidant flavonoids (quercetin and taxifolin) on in vitro maturation of porcine oocytes. Asian-Australasia Journal of Animal Sciences, 2016, 29(3): 352-358 CrossRef
  59. Kang J., Kwon D., Park S., Kim S., Moon J., Koo O., Jang G., Lee B. Quercetin improves the in vitro development of porcine oocytes by decreasing reactive oxygen species levels. Journal of Veterinary Science, 2013, 14(1): 15-20 (doi:10.4142/jvs.2013.14.1.15">CrossRef
  60. Tarko A., Štochmal’ová A., Jedlicková K., Hrabovszká S., Vachanová A., Harrath A.H., Alwasel S., Alrezaki A., Kotwica J., Baláži A., Sirotkin A.V. Effects of benzene, quercetin, and their combination on porcine ovarian cell proliferation, apoptosis, and hormone release. Archives Animal Breeding, 2019, 62(1): 345-351 CrossRef
  61. Ma Z. The effect of dietary quercetin on the glutathione kinetics in the gut mucosa of weaned piglets. Master of Science in Nutrition and Rural Development. Gent University, 2016. Available: https://lib.ugent.be/en/catalog/rug01:002305194. Accessed: 15.09.2019.
  62. Chen F., Yuan Q., Xu G., Chen H., Lei H., Su I. Effects of quercetin on proliferation and H2O2-induced apoptosis of intestinal porcine enterocyte cells. Molecules, 2018, 23(8): 2012 CrossRef
  63. Thanh B.V.L., Lemay M., Bastien A., Lapointe J., Lessard M., Chorfi G., Guay F. The potential effects of antioxidant feed additives in mitigating the adverse effect of corn naturally contaminated with Fusarium mycotoxin on antioxidant systems in intestinal mucosa, plasma, and liver in weaned pigs. Mycotoxin Research, 2016, 32(2): 99-116 CrossRef
  64. Nikanova L.A., Fomichev Yu.P. Rossiiskii zhurnal «Problemy veterinarnoi sanitarii, gigieny i ekologii», 2012, 1(7): 62-65 (in Russ.).
  65. Fomichev Yu.P., Nikanova L.A., Kleimenov R.V., Netecha Z.A. Veterinarnaya meditsina, 2010, 5-6: 30-32 (in Russ.).
  66. Nikanova L.A., Fomichev Yu.P. V sbornike: Nauchn. trudy Severo-Kavkazskogo nauchno-issledovatel'skogo instituta zhivotnovodstva, 2016, 5(2): 89-96 (in Russ.).
  67. Ivanova S.G., Nakev J.L., Nikolova T.I., Vlahova-Vangelova D.B., Balev D.K, Dragoev S.G., Gerrard D.E., Grozlekova L.S., Tashkova D.A. Effect of new livestock feeds’ phytonutrients on productivity, carcass composition and meat quality in pigs. Available: https://agrixiv.org/jfrvy/download/?format=pdf. Accessed: 13.08.2019 CrossRef
  68. Zou Y., Wei H.K., Xiang Q.-H., Wang J., Zhou Y.-F., Peng J. Protective effect of quercetin on pig intestinal integrity after transport stress is associated with regulation oxidative status and inflammation. Journal of Veterinary Medical Science, 2016, 78(9): 1487-1494 CrossRef
  69. Kremer B.T., Stahly S., Sebranek J.G. Effect of dietary quercetin on pork quality (1999). Iowa State University. Swine Research Report, 1998, 65. Available: http://lib.dr.iastate.edu/swinereports_1998/65. Accessed: 10.09.2019.
  70. Vlahova-Vangelova D.B., Dragoev S.G., Balev D.K., Ivanova S.G., Nikolova T.I., Nakev I.L., Gerrard D.E. Improving the oxidative stability of pork by antioxidant type phytonutrients. University of Food Technologies, Technological Faculty, Department of Meat and Fish Technology, Bulgaria. Available: https://agrirxiv.org/search-details/?pan=20203203578. Accessed: 02.07.2020 CrossRef
  71. Zou Y., Xiang Q., Wang J., Wei H., Peng J. Effects of oregano essential oil or quercetin supplementation on body weight loss, carcass characteristics, meat quality and antioxidant status in finishing pigs under transport stress. Livestock Science, 2016, 192: 33-38 CrossRef
  72. Hollinger K., Shanely R.A., Quindry J.C., Selsby J.T. Long-term quercetin dietary enrichment decreases muscle injury in mdx mice. Clinical Nutrition, 2015, 34(3): 515-522 CrossRef
  73. Mukai R., Matsui N., Fujikura Y., Matsumoto N., Hou D.-X., Kanzaki N., Shibata H., Horikawa M., Iwasa K., Hirasaka K., Nikawa T., Terao J. Preventive effect of dietary quercetin on disuse muscle atrophy by targeting mitochondria in denervated mice. The Journal of Nutritional Biochemistry, 2016, 31: 67-76 CrossRef

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)