PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2022.5.882eng

UDC: 633.72:581.19:575

Acknowledgements:
Supported financially by Russian Science Foundation, project No. 22-16-00058

 

GENETIC MECHANISMS OF THE BIOSYNTHESIS OF CATECHINS, CAFFEINE AND L-THEANINE IN THE TEA PLANT Camellia sinensis (L.) Kuntze (review)

L.S. Malyukova1 , L.S. Samarina1, 2, N.V. Zagoskina3

1Federal Research Centre the Subtropical Scientific Centre RAS, 2/28, ul. Yana Fabriciusa, Sochi, Krasnodar Territory, 354002 Russia, e-mail malukovals@mail.ru (✉ corresponding author);
2Sirius University of Science and Technology, 1, Olimpiysky prosp., Sirius, Krasnodar Territory, 354340 Russia, Krasnodar Territory, e-mail q11111w2006@yandex.ru;
3Timiryazev Institute of Plant Physiology RAS, 35, ul. Botanicheskaya, Moscow, 127276 Russia, e-mail nzagoskina@mail.ru

ORCID:
Malyukova L.S. orcid.org/0000-0003-1531-5745
Zagoskina N.V. orcid.org/0000-0002-1457-9450
Samarina L.S. orcid.org/0000-0002-0500-1198

Received August 15, 2022

Catechins, caffeine and L-theanine are the main secondary metabolites of the tea plant Camellia sinensis (L.) Kuntze. They play a key role in shaping the taste, nutritional and medicinal value of tea (W.J.M. Lorenzo et al., 2016; Z. Yan et al., 2020). In addition, they are involved in the regulation of plant life, in particular, in the processes of adaptation to extreme environmental conditions (Y.S. Wang et al., 2012; L.G. Xiong et al., 2013; G.J. Hong et al., 2014). The above determines the interest in the physiological, biochemical and molecular mechanisms of the production of catechins, caffeine and L-theanine, to increase their accumulation in the plant (R. Fang et al., 2017; W. Kong et al., 2022), as well as to studying their participation in plant response to stress (P.O. Owuor et al., 2010). In the recent 5 years, a lot of new knowledge has been gained on the genes for the biosynthesis of catechins, L-theanine and caffeine, but there are no new reviews that generalize these new data and connect them with new data on the regulation of stress responses in tea. The purpose of this review is to analyze and summarize current data on the genetic mechanisms of the biosynthesis of catechins, L-theanine and caffeine in tea plant tissues, as well as their relationship with genes that regulate abiotic stress responses. The biosynthesis of catechins is carried out along the phenylpropanoid and flavonoid pathways (A. Laura et al., 2019; S. Alseekh et al., 2020) with the participation of the chalcone synthase (CHS), anthocyanidin synthetase (ANS), anthocyanidin reductase (ANR) and leucoanthocyanidin reductase genes (LAR) (J. Bogs et al., 2005). The accumulation of catechins in the tea plant involves transcription regulation factors of the MYB family, which regulate the expression of the PAL, F3′H, and FLS genes (C.-F. Li et al., 2015). Caffeine formation occurs mainly in tea leaves during purine modification (H. Ashihara, 2015) involving the IMPDH (Inosine monophosphate dehydrogenase), SAMS (Synthetase gene family), MXMT (7-methylxanthine methyltransferase), and TCS (tea caffeine synthase) genes. There are already 132 known transcription factors belonging to 30 families (including those encoded by genes of the bZIP, bHLH and MYB families), which are associated with the expression of caffeine biosynthesis genes (C.-F. Li et al., 2015). In C. sinensis, the biosynthesis of L-theanine from glutamate with the participation of pyruvate is controlled by a cascade of genes, the main of which are GS (glutamine synthetase), GOGAT (glutamate synthase), GDH (glutamate dehydrogenase), ALT (alanine transaminase), ADC (arginine decarboxylase), and TS (theanine synthetase) (C.Y. Shi et al., 2011; Y. Li et al., 2019). The regulation of these genes is conducted by more than 90 transcription factors — members of the AP2-EREBP, bHLH, C2H2 and WRKY, bZIP, C3H, and REM families (C.-F. Li et al., 2015). The influence of stress conditions (drought, cold, salinity, nutrient deficiency) on accumulation of these biologically active substances is discussed. Nevertheless, the relationships between the expression of the metabolism genes of the studied compounds and transcription factors remain insufficiently studied; as well as changes in regulatory networks for the biosynthesis of valuable metabolites of tea plants under various environmental stresses.

Keywords: Camellia sinensis (L.) Kuntze, secondary metabolites, alkaloids, amino acids, catechins, L-theanine, caffeine, metabolite genes, gene expression, transcription factors, drought, low temperatures, salinity, nutrients.

 

REFERENCES

  1. Zhao J., Li P., Xia T., Wan X. Exploring plant metabolic genomics: chemical diversity, metabolic complexity in the biosynthesis and transport of specialized metabolites with the tea plant as a model. Crit. Rev. Biotechnol., 2020, 40(5): 667-688 CrossRef
  2. Sharangi A.B. Medicinal and therapeutic potentialities of tea (Camellia sinensis L.) — a review. Food Research International, 2009, 42 (5-6): 529-535 CrossRef
  3. Frei B., Higdon J.V. Antioxidant activity of tea polyphenols in vivo: evidence from animal studies. Journal of Nutrition, 2003, 133(10): 3275-3284 CrossRef
  4. Boschmann M., Thielecke, F. The effects of epigallocatechin-3-gallate on thermogenesis and fat oxidation in obese men: a pilot study. Journal of the American College of Nutrition, 2007, 26(4): 389-395 CrossRef
  5. Khan N., Mukhtar H. Tea polyphenols for health promotion. Life Sciences, 2007, 81(7): 519-533 CrossRef
  6. Velayutham P., Babu A., Liu D. Green tea catechins and cardiovascular health: An update. Current medicinal chemistry,2008, 15(18): 1840-1850 CrossRef
  7. Lorenzo J.M., Munekata P.E.S. Phenolic compounds of green tea: health benefits and technological application in food. Asian Pacific Journal of Tropical Biomedicine, 2016, 6(8): 709-719 CrossRef
  8. Yan Z., Zhong Y., Duan Y., Chen Q., Li F. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Animal Nutrition, 2020, 6(2): 115-123 CrossRef
  9. Vuong Q.V., Bowyer M.C., Roach P.D. L-Theanine: properties, synthesis and isolation from tea. Journal of the Science of Food and Agriculture, 2011, 91(11): 1931-1939 CrossRef
  10. Khalesi S., Sun J., Buys N., Jamshidi A., Nikbakht-Nasrabadi E., Khosravi-boroujeni H. Green tea catechins and blood pressure: a systematic review and meta-analysis of randomized controlled trials. European Journal of Nutrition, 2014, 53(6): 1299-1311 CrossRef
  11. Karuppusamy S. A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. Journal of Medicinal Plants Research, 2009, 3(13): 1222-1239 CrossRef
  12. Gaurav N., Juyal P., Tyagi M., Chauhan N., Kumar A. A review on in vitro propagation of medicinal plants. Journal of Pharmacognosy and Phytochemistry, 2018, 7(6): 2228-2231.
  13. Zhang X.B. Differences of polyphenols content in Anxi TieGuanYin tea among different seasons and relationship between polyphenols and tea quality. Agricultural Science & Technology, 2014, 15(7): 1191-1195.
  14. Fang R., Redfern S.P., Kirkup D., Porter E.A., Kite G.C., Terry L.A., Berry M.J., Simmonds M.S.J. Variation of theanine, phenolic, and methylxanthine compounds in 21 cultivars of Camellia sinensis harvested in different seasons. Food Chemistry, 2017, 220: 517-526 CrossRef
  15. Owuor P.O., Kamau D.M., Jondiko E.O. The influence of geographical area of production and nitrogenous fertilizer on yields and quality parameters of clonal tea. Journal of Food, Agriculture and Environment, 2010, 8: 682-690 CrossRef
  16. Malyukova L.S., Tsyupko T.G., Pritula Z.V., Voronova O.B., Gushchaeva K.S., Velikiy A.V. V sbornike: Fenol’nye soedineniya: funktsional’naya rol’ v rasteniyakh [In: Phenolic compounds: functional role in plants]. Moscow, 2018: 272-277 (in Russ.).
  17. Belous O.G, Platonova N.B. Biologically active substances of Samellia sinensis in a humid subtropical climate of Russia. Slovak Journal of Food Sciences, 2021, 15: 360-368 CrossRef
  18. Gushchaeva K.S., Tsyupko T.G., Voronova O.B., Malyukova L.S. Zavodskaya laboratoriya. Diagnostika materialov, 2021, 87(9): 12-19 CrossRef (in Russ.).
  19. Ercisli S., Orhan E., Ozdemir O., Sengul M., Gungor N. Seasonal variation of total phenolic, antioxidant activity, plant nutritional elements and fatty acids in tea leaves (Camellia sinensis var. sinensis clone Derepazari 7) grown in Turkey. Pharmaceutical Biology, 2008, 46(10-11): 683-687 CrossRef
  20. Lee L.-S., Kim S.-H., Kim Y.-B., Kim Y.-C. Quantitative analysis of major constituents in green tea with different plucking periods and their antioxidant activity. Molecules, 2014, 19(7): 9173-9186 CrossRef
  21. Gong A.D., Lian S.B., Wu N.N., Zhou Y.J., Zhao S.Q., Zhang L.M., Cheng L., Yuan H.Y. Integrated transcriptomics and metabolomics analysis of catechins, caffeine and theanine biosynthesis in tea plant (Camellia sinensis) over the course of seasons. BMC Plant Biology, 2020, 20(1): 294 CrossRef
  22. Jamir T. Seasonal variations in antioxidant capacities and phenolic contents of tea leaf extracts. Asian Journal of Pharmaceutical and Clinical Research, 2020, 13(4): 108-112 CrossRef
  23. Belous O.G. Influence of microelements on biochemical parameters of tea. Potravinarstvo, 2013, 7(S): 149-152.
  24. Diniz P.H.G.D., Pistonesi M. F., Alvarez M.B., Band B.S.F., Araujo M.C.U. Simplified tea classification based on a reduced chemical composition profile via successive projections algorithm linear discriminant analysis (SPA-LDA). Journal of Food Composition and Analysis, 2015, 39: 103-110 CrossRef
  25. Ryndin A.V., Malyukova L.S., Tsyupko T.G., Voronova O.B., Gushchaeva K.S. Novye tekhnologii, 2018, 4: 224-229 (in Russ.).
  26. Pritula Z.V., Malyukova L.S., Bekhterev V.N. Plodovodstvo i yagodovodstvo Rossii, 2019, 59: 92-98 CrossRef (in Russ.).
  27. Zubova M.Yu., Nikolaeva T.N., Nechaeva T.L., Malyukova L.S., Zagoskina N.V. Khimiya rastitel’nogo syr’ya, 2019, 4: 249-257 CrossRef (in Russ.).
  28. Sabhapondit S., Karak T., Bhuyan L.P., Goswami B.C., Hazarika M. Diversity of catechin in northeast Indian tea cultivars. The Scientific World Journal,2012, 1-8 CrossRef
  29. Sari F., Velioglu Y.S. Changes in theanine and caffeine contents of black tea with different rolling methods and processing stages. European Food Research and Technology, 2013, 237(2): 229-236 CrossRef
  30. Pritula Z.V., Bekhterev V.N., Malyukova L.S. Subtropicheskoe i dekorativnoe sadovodstvo, 2015,54: 185-192 (in Russ.).
  31. Runa J., Haerdter R., Gerendás J. Impact of nitrogen supply on carbon/nitrogen allocation: a case study on amino acids and catechins in green tea [Camellia sinensis (L.) O. Kuntze] plants. Plant Biology, 2010: 12(5): 724-734 CrossRef
  32. Hrishikesh U., Biman K, D., Lingaraj S., Sanjib K. P. Comparative effect of Ca, K, Mn and B on post-drought stress recovery in tea [Camellia sinensis (L.) O. Kuntze]. American Journal of Plant Sciences, 2012, 3(4): 443-460 CrossRef
  33. Ruan J., Ma L., Shi Y. Potassium management in tea plantations: its uptake by field plants, status in soils, and efficacy on yields and quality of teas in China. Journal of Plant Nutrition and Soil Science, 2013, 176(3): 450-459 CrossRef
  34. Kwach B.O., Owuor P., Kamau D., Msomba S., Uwimana M.A. Variations in the precursors of plain black tea quality parameters due to location of production and nitrogen fertilizer rates in eastern African clonal tea leaves. Experimental Agriculture, 2016: 52(2): 266-278 CrossRef
  35. Malyukova L.S., Pritula Z.V., Kozlova N.V., Veliky A.V., Rogozhina E.V., Kerimzade V.V., Samarina L.S. Effects of calcium-containing natural fertilizer on Camellia sinensis (L.) Kuntze. Bangladesh Journal of Botany, 2021, 50(1): 179-187 CrossRef
  36. Hernaendez I., Alegre L., Munne-Bosch S. Enhanced oxidation of flavan-3-ols and proanthocyanidin accumulation in water-stressed tea plants. Phytochemistry, 2006, 67(11): 1120-1126 CrossRef
  37. Xu Z., Zhou G., Shimizu H. Plant responses to drought and rewatering. Plant Signaling & Behavior, 2010, 5(6): 649-654 CrossRef
  38. Maritim T.K., Kamunya S.M., Mireji P., Mwendia C.M., Muoki R.C., Cheruiyot E.K., Wachira F.N. Physiological and biochemical response of tea (Camellia sinensis (L.) O. Kuntze) to water-deficit stress. The Journal of Horticultural Science and Biotechnology, 2015, 90(4): 395-400 CrossRef
  39. Samarina L.S., Bobrovskikh A.V., Doroshkov A.V., Malyukova L.S., Matskiv A.O., Rakhmangulov R.S., Koninskaya N.G., Malyarovskaya V.I., Tong W., Xia E, Manakhova K.M., Ryndin A.V., Orlov Y.L. Comparative expression analysis of stress-inducible candidate genes in response to cold and drought of tea plant (Camellia sinensis (L.) Kuntze). Frontiers in Genetics, 2020, 11: 1613 CrossRef
  40. Agati G., Tattini M. Multiple functional roles of flavonoids in photo protection. New Phytolgist, 2010, 186(4): 786-793 CrossRef
  41. Wang Y.S., Gao L.P., Wang Z.R., Liu Y.J., Sun M., Yang D., Wei C., Shan Y., Xia T. Light-induced expression of genes involved in phenylpropanoid biosynthetic pathways in callus of tea (Camellia sinensis (L.) O. Kuntze). Scientia Horticulturae, 2012, 133: 72-83 CrossRef
  42. Malyukova L.S., Samarina L.S., Koninskaya N.G., Pritula Z.V., Gvasaliya M.V., Tsyupko T.G., Voronova O.B.  AgroЕkoInfo, 2019, 4: 30 (in Russ.).
  43. Malyukova L.S., Nechaeva T.L., Zubova M.Yu., Gvasaliya M.V., Koninskaya N.G., Zagoskina N.V. Physiological and biochemical characterization of tea (Camellia sinensis L.) microshoots in vitro: the norm, osmotic stress, and effects of calcium. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2020, 55(5): 970-980 CrossRef
  44. Samarina L., Matskiv A., Simonyan T., Koninskaya N., Malyarovskaya V., Gvasaliya M., Malyukova L., Mytdyeva A., Martinez-Montero M., Choudhary R., Ryndin A. Biochemical and genetic responses of tea (Camellia sinensis (L.) Kuntze) microplants under the mannitol-induced osmotic stress in vitro. Plants, 2020, 9(12): 1795 CrossRef
  45. Peng P., Xie Q., Li P., Hou Y., Hu X., Lin, Q. Studies on the allelopathy components of tea. Southwest China Journal of Agricultural Sciences, 2009, 22(1): 67-70.
  46. Zeng L., Zhou X., Liao Y., Yang Z. Roles of specialized metabolites in biological function and environmental adaptability of tea plant (Camellia sinensis) as a metabolite studying model. Journal of Advanced Research, 2021, 34: 159-171 CrossRef
  47. Lillo C., Lea U., Ruoff P. Nutrient depletion as a key factor for manipulating gene expression and product formation in different branches of the flavonoid pathway. Plant Cell Environ., 2008, 31(5): 587-601 CrossRef
  48. Akola R., Ravishankar G.A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior, 2011, 6(11): 1720-1731 CrossRef
  49. Xiong L.G., Lia J., Lia Y.H., Yuan L., Liu S., Huang J., Liu Z. Dynamic changes in catechin levels and catechin biosynthesis-related gene expression in albino tea plants (Camellia sinensis L.). Plant Physiology and Biochemistry,2013, 71: 132-143 CrossRef
  50. Hong G.J., Wang J., Zhang Y., Hochstetter D., Zhang S., Pan Y.,Shi Y., Xu P., Wang Y. Biosynthesis of catechin components is differentially regulated in dark-treated tea (Camellia sinensis L.). Plant physiology and biochemistry, 2014, 78: 49-52 CrossRef
  51. Lin S., Chen Z., Chen T., Deng W., Wan X., Zhang Z. Theanine metabolism and transport in tea plants (Camellia sinensis L.): advances and perspectives. Critical Reviews in Biotechnology, 2022, 1-15 CrossRef
  52. Eungwanichayapant P.D., Popluechai S. Accumulation of catechins in tea in relation to accumulation of mRNA from genes involved in catechin biosynthesis. Plant Physiology and Biochemistry,2009, 47(2): 94-97 CrossRef
  53. Jia S., Wang Y., Hu J., Ding Z., Liang Q., Zhang Y., Wang H. Mineral and metabolic profiles in tea leaves and flowers during flower development. Plant Physiology and Biochemistry, 2016, 106: 316-326 CrossRef
  54. Bai P., Wei K., Wang L., Zhang F., Ruan L., Li H., Liyun Wu., Cheng H. Identification of a novel gene encoding the specialized alanine decarboxylase in tea (Camellia sinensis). Molecules, 2019, 24(3): 540 CrossRef
  55. Liao Y., Zhou X., Zeng L. How does tea (Camellia sinensis) produce specialized metabolites which determine its unique quality and function: a review. Critical Reviews in Food Science and Nutrition, 2022, 62(14): 3751-3767 CrossRef
  56. Shi C.Y., Yang H., Wei C.L., Yu O., Zhang Z.Z., Jiang C. J., Sun J., Li Y.Y., Chen Q., Xia T., Wan X.C. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC Genomics,2011, 12(1): 131 CrossRef
  57. Li C.-F., Zhu Y., Yu Y., Zhao Q.-Y., Wang S.-J., Wang X.-C., Yao M.-Z., Luo D., Li X., Chen L., Yang Y.-J. Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis). BMC Genomics, 2015, 16(1): 560 CrossRef
  58. Wei C., Yang H., Wang S., Zhao J., Liu C., Gao L., Xia E., Lu Y., Tai Y., She G., Sun J., Cao H., Tong W., Gao Q., Li Y., Deng W., Jiang X., Wang W., Chen Q., Zhang Sh., Li Y., Wu J., Wang P., Li P., Shi Ch., Zheng F., Jian J., Huang B., Shan D., Shi M., Fang C., Yue Y., Li F., Li D., Wei Sh., Han B., Jiang Ch., Yin Y., Xia T., Zhang Z., Bennetzen J.L., Zhao Sh., Wan X. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proceedings of the National Academy of Sciences, 2018, 115(18): E4151-E4158 CrossRef
  59. Li Y., Wang X., Ban Q., Zhu X., Jiang C., Wei C., Bennetzen J.L. Comparative transcriptomic analysis reveals gene expression associated with cold adaptation in the tea plant Camellia sinensis. BMC Genomics, 2019, 20(1): 624. CrossRef
  60. Xia E.H., Li F.D., Tong W., Li P.H., Wu Q., Zhao H.J., Ge R.H., Li R.P., Li Y.Y., Zhang Z.Z., Wei C.L., Wan X.C. Tea plant information archive: a comprehensive genomics and bioinformatics platform for tea plant. Plant Biotechnology Journal, 2019, 17(10): 1938-1953 CrossRef
  61. Xia E.H., Tong W., Wu Q., Wei S., Zhao J., Zhang Z. Z., Wei C.L., Wan X. C. Tea plant genomics: achievements, challenges and perspectives. Horticulture Research, 2020, 7: 7 CrossRef
  62. Huang H., Yao Q., Xia E., Gao L. Metabolomics and transcriptomics analyses reveal nitrogen influences on the accumulation of flavonoids and amino acids in young shoots of tea plant (Camellia sinensis L.) associated with tea flavor. Journal of agricultural and food chemistry, 2018, 66(37): 9828-9838 CrossRef
  63. Zhen Y.S. Antitumor activity of tea products. In: Tea: bioactivity and therapeutic potential. Y.S. Zhen, Z.M. Chen, S.J. Cheng, V.L. Chen (eds.). CRC Press, London. New York,2002 CrossRef
  64. Guo Q., Zhao B., Shen S., Hou J., Hu J., Xin W. ESR study on the structure-antioxidant activity relationship of tea catechins and their epimers. Biochimica et Biophysica Acta (BBA)-General Subjects, 1999, 1427(1): 13-23 CrossRef
  65. Farkas O., Jakus J., Héberger K. Quantitative structure-antioxidant activity relationships of flavonoid compounds. Molecules, 2004, 9(12): 1079-1088 CrossRef
  66. Nakagawa T., Yokozawa T. Direct scavenging of nitric oxide and superoxide by green tea. Food and chemical Toxicology, 2002, 40(12): 1745-1750 CrossRef
  67. Laura A., Moreno-Escamilla J.O., Rodrigo-García J., Alvarez-Parrilla E. Phenolic compounds. In: Postharvest physiology and biochemistry of fruits and vegetables. E.M.Yahia (ed.). Woodhead Publishing, 2019 CrossRef
  68. Alseekh S., Perez de Souza L., Benina M., Fernie A. R. The style and substance of plant flavonoid decoration; towards defining both structure and function. Phytocnemistry,2020, 174: 112347 CrossRef
  69. Kamiishi Y., Otani M., Takagi H., Han D.S., Mori S., Tatsuzawa F., Okuhara H., Kobayashi H., Nakano M. Flower color alteration in the liliaceous ornamental Tricyrtis sp. by RNA interference mediated suppression of the chalcone synthase gene. Molecular breeding, 2012, 30(2): 671-680 CrossRef
  70. Morita Y., Saito R., Ban Y., Tanikawa N., Kuchitsu K., Ando T., Yoshikawa M., Habu Y., Ozeki Y., Nakayama M. Tandemly arranged chalcone synthase A genes contribute to the spatially regulated expression of siRNA and the natural bicolor floral phenotype in Petunia hybrida. The Plant Journal, 2012, 70(5): 739-749 CrossRef
  71. Dare A.P., Tomes S., Jones M., McGhie T.K., Stevenson D.E., Johnson R.A., Greenwood D.R., Hellens R.P. Phenotypic changes associated with RNA interference silencing of chalcone synthase in apple (Malus ½ domestica). The Plant Journal, 2013, 74(3): 398-410 CrossRef
  72. Jiang C., Schommer C.K., Kim S.Y., Suh D.Y. Cloning and characterization of chalcone synthase from the moss, Physcomitrella patens. Phytochemistry, 2006, 67(23): 2531-2540 CrossRef
  73. She H., He S., Zhou Z., Zhang Q. Molecular cloning and sequences analysis of chalcone synthase gene from Fagopyrum tataricum. In: Informatics and management science I. W. Du (ed.). Springer, London, 2013 CrossRef
  74. Takeuchi A., Matsumoto S., Hayatsu M. Chalcone synthase from Camellia sinensis: isolation of the cDNAs and the organ-specific and sugar-responsive expression of the genes. Plant and Cell Physiology, 1994, 35(7): 1011-1018 CrossRef
  75. Mamati G.E., Liang Y., Lu J. Expression of basic genes involved in tea polyphenol synthesis in relation to accumulation of catechins and total tea polyphenols. Journal of the Science of Food and Agriculture, 2006, 86(3): 459-464 CrossRef
  76. Wilmouth R.C., Turnbull J.J., Welford R.W., Clifton I.J., Prescott A.G., Schofield C.J. Structure and mechanism of anthocyanidin synthase from Arabidopsis thaliana. Structure, 2002, 10(1): 93-103 CrossRef
  77. Bogs J., Downey M.O., Harvey J.S., Ashton A.R., Tanner G.J., Robinson S.P. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grapeberries and grapevine leaves. Plant Physiology, 2005, 139(2): 652-663 CrossRef
  78. Tanner G.J., Francki K.T., Abrahams S., Watson J.M., Larkin P.J., Ashton A.R. Proanthocyanidin biosynthesis in plants: purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA. Journal of Biological Chemistry, 2003, 278(34): 31647-31656 CrossRef
  79. Saito K., Kobayashi M., Gong Z., Tanaka Y., Yamazaki M. Direct evidence for anthocyanidin synthase as a 2‐oxoglutarate‐dependent oxygenase: molecular cloning and functional expression of cDNA from a red forma of Perilla frutescens. The Plant Journal, 17(2): 181-189 CrossRef
  80. Punyasin P.A.N., Abeysinghe I.S.B., Kumar V., Treutter D., Duy D., Gosch C., Martens S., Forkmann G., Fischer T.C. Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways. Archives of Biochemistry and Biophysics, 2004, 431(1): 22-30 CrossRef
  81. Xie D.Y., Sharma S.B., Dixon R.A. Anthocyanidin reductases from Medicago truncatula and Arabidopsis thaliana. Archives of Biochemistry and Biophysics, 2004, 422(1): 91-102 CrossRef
  82. Zhang L.Q., Wei K., Cheng,H., Wang L.Y., Zhang, C.C. Accumulation of catechins and expression of catechin synthetic genes in Camellia sinensis at different developmental stages. Botanical Studies, 2016, 57(1): 31 CrossRef
  83. Liu M., Tian H., Wu J., Cang R., Wang R., Qi X., Xu Q., Chen X. Relationship between gene expression and the accumulation of catechin during spring and autumn in tea plants (Camellia sinensis L.). Horticulture Research, 2015, 2: 15011 CrossRef
  84. Nesi N., Jond C., Debeaujon I., Caboche M., Lepiniec L. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. The Plant Cell, 2001, 13(9): 2099-2114 CrossRef
  85. Taylor L.P., Grotewold E. Flavonoids as developmental regulators. Current Opinion in Plant Biology, 2005, 8(3): 317-323 CrossRef
  86. Baudry A., Caboche M., Lepiniec L. TT8 controls its own expression in a feedback regulation involving TTG1 and homologous MYB and bHLH factors, allowing a strong and cell‐specific accumulation of flavonoids in Arabidopsis thaliana. The Plant Journal, 2006, 46(5): 768-779 CrossRef 
  87. Ravaglia D., Espley R.V., Henry-Kirk R.A., Andreotti S., Ziosi V., Hellens R.P., Costa G., Allan A.C. Transcriptional regulation of flavonoid biosynthesis in nectarine (Prunus persica) by a set of R2R3 MYB transcription factors. BMC Plant Biology, 2013, 13: 68 CrossRef
  88. Li P., Xia E., Fu J., Xu Y., Zhao X., Tong W., Tang Q., Tadege M., Fernie A.R., Zhao J. Diverse roles of MYB transcription factors in regulating secondary metabolite biosynthesis, shoot development, and stress responses in tea plants (Camellia sinensis). The Plant Journal, 2022, 110(4): 1144-1165 CrossRef
  89. Song S., Tao Y., Gao L., Liang H., Tang D., Lin J., Wang Y., Gmitter F.G. Jr., Li C. An integrated metabolome and transcriptome analysis reveal the regulation mechanisms of flavonoid biosynthesis in a purple tea plant cultivar. Frontiers in Plant Science, 2022, 13: 880227 CrossRef
  90. Mohanpuria P., Kumar V., Yadav S.K. Tea caffeine: metabolism, functions, and reduction strategies. Food Science and Biotechnology, 2010, 19(2): 275-287 CrossRef
  91. Ashihara H., Kubota H. Patterns of adenine metabolism and caffeine biosynthesis in different parts of tea seedlings. Physiologia Plantarum, 1986, 68(2): 275-281 CrossRef
  92. Negishi O., Ozawa T., Imagawa H. Biosynthesis of caffeine from purine nucleotides in tea plant. Bioscience, biotechnology, and biochemistry, 1992, 56(3): 499-503 CrossRef
  93. Yoneyama N., Morimoto H., Ye C.X., Ashihara H., Mizuno K., Kato M. Substrate specificity of N-methyltransferase involved in purine alkaloids synthesis is dependent upon one amino acid residue of the enzyme. Molecular Genetics and Genomics, 2006, 275(2): 125-135 CrossRef
  94. Ping L., Ren Q., Kang X., Zhang Y., Lin X., Li B., Gao X., Chen Z. Isolation and functional analysis of promoter for N-methyltransferase gene associated with caffeine biosynthesis in tea plants (Camellia sinensis). Journal of Tea Science, 2018, 38(6): 569-579.
  95. Kato M., Mizuno K., Crozier A., Fujimura T., Ashihara H. Caffeine synthase gene from tea leaves. Nature, 2000, 406: 956-957 CrossRef
  96. Li P., Ye Z., Fu J., Xu Y, Shen Y, Zhang Y., Tang D., Li P., Zuo H., Tong W., Wang S., Fernie A.R., Zhao J. CsMYB184 regulates caffeine biosynthesis in tea plants. Plant Biotechnology Journal, 2022, 20(6): 1012-1014 CrossRef
  97. Yamada Y., Sato F. Transcription factors in alkaloid biosynthesis. International review of cell and molecular biology, 2013, 305: 339-382 CrossRef
  98. Shi D., Winston J.H., Blackburn M.R., Datta S.K., Hanten G., Kellems R.E. Diverse genetic regulatory motifs required for murine adenosine deaminase gene expression in the placenta. Journal of Biological Chemistry, 1997, 272(4): 2334-2341 CrossRef
  99. Zhu B., Chen L.B., Lu M., Zhang J., Han J., Deng W.W., Zhang Z.Z. Caffeine content and related gene expression: novel insight into caffeine metabolism in camellia plants containing low, normal, and high caffeine concentrations. Agricultural and Food Chemistry, 2019, 67(12): 3400-3411 CrossRef
  100. Ma W., Kang X., Liu P., She K., Zhang Y., Lin X., Li B., Chen Z. The NAC-like transcription factor CsNAC7 positively regulates the caffeine biosynthesis-related gene yhNMT1 in Camellia sinensis. Horticulture research, 2022, 9: uhab046 CrossRef
  101. Hara Y., Luo S.J., Wikramasinghe R.L., Yamanishi T. Special issue on tea. Food Reviews International, 1995, 11: 371-545.
  102. Harbowy M.E., Balentine D.A., Davies A.P., Cai Y. Tea chemistry. Critical Reviews in Plant Sciences, 1997, 16(5): 415-480 CrossRef
  103. Thippeswamy R., Mallikarjun Gouda K.G., Rao D.H., Martin A., Gowda L.R. Determination of theanine in commercial tea by liquid chromatography with fluorescence and diode array ultraviolet detection. Journal of Agricultural and Food Chemistry, 2006, 54(19): 7014-7019 CrossRef
  104. Mu W., Zhang T., Jiang B. An overview of biological production of L-theanine. Biotechnology Advances, 2015, 33(3-4): 335-342 CrossRef
  105. Chen Z., Wang Z., Yuan H., He N. From tea leaves to factories: a review of research progress in L-theanine biosynthesis and production. Journal of Agricultural and Food Chemistry, 2021, 69(4): 1187-1196 CrossRef 
  106. Lea P.J., Blackwell R.D., Chen F.L., Hecht U. Enzymes of ammonia assimilation. In: Methods in plant biochemistry. P.J. Lea (ed.). Academic Press, London, 1990 CrossRef
  107. Crocomo O., Fowden L. Amino acid decarboxylases of higher plants: the formation of ethylamine. Phytochemistry, 1970, 9(3): 537-540 CrossRef
  108. Smith T. The occurrence, metabolism and functions of amines in plants. Biological Reviews, 1971, 46(2): 201-241 CrossRef
  109. Takeo T. L-Alanine as a precursor of ethylamine in Camellia sinensis. Phytochemistry, 1974, 13(8): 1401-1406 CrossRef
  110. Wen B., Luo Y., Liu D., Zhang X., Peng Z., Wang K., Lia J., Huang J., Liu Zh. The R2R3-MYB transcription factor CsMYB73 negatively regulates L-theanine biosynthesis in tea plants (Camellia sinensis L.). Plant Science, 2020, 298: 110546 CrossRef
  111. Cheng H., Wu W., Liu X., Wang Y., Xu P. Transcription factor CsWRKY40 regulates L-theanine hydrolysis by activating the CsPDX2.1 promoter in tea leaves during withering. Horticulture Research, 2022, 9: uhac025 CrossRef
  112. Duan X., Hu X., Chen F., Deng Z. Bioactive ingredient levels of tea leaves are associated with leaf Al level interactively influenced by acid rain intensity and soil Al supply. Journal of Food Agriculture and Environment, 2012, 10: 1197-1204.
  113. Ahmed S., Stepp J.R., Orians C., Griffin T., Matyas C., Robbat A., Cash S., Xue D., Long C., Unachukwu U., Buckley S., Small D., Kennelly E. Effects of extreme climate events on tea (Camellia sinensis) functional quality validate indigenous farmer knowledge and sensory preferences in tropical China. PLoS ONE, 2014, 9(10): e109126 CrossRef
  114. Cao H., Wang L., Yue C., Hao X., Wang X., Yang Y. Isolation and expression analysis of 18 CsbZIP genes implicated in abiotic stress responses in the tea plant (Camellia sinensis). Plant Physiology and Biochemistry, 2015, 97: 432-442 CrossRef
  115. Liu S.-C., Jin J.-Q., Ma J.-Q., Yao M.-J., Ma C.-L., Li C.-F., Ding Z.-T., Chen L. Transcriptomic analysis of tea plant responding to drought stress and recovery. PLoS ONE, 2016, 11(1): e0147306 CrossRef
  116. Chen J., Gao T., Wan S., Zhang Y., Yang J., Yu Y., Wang W. Genome-wide identification, classification and expression analysis of the HSP gene superfamily in tea plant (Camellia sinensis). International Journal of Molecular Sciences, 2018, 19(9): 2633 CrossRef
  117. Cui X., Wang Y.X., Liu Z.W., Wang W.L., Li H., Zhuang J. Transcriptome-wide identification and expression profile analysis of the bHLH family genes in Camellia sinensis. Functional & Integrative Genomics,2018, 18(5): 489-503 CrossRef
  118. Zhu B., Chen L.B., Lu M., Zhang J., Han J., Deng W.W., Zhang Z.Z. Caffeine content and related gene expression: novel insight into caffeine metabolism in Camellia plants containing low, normal, and high caffeine concentrations. Journal of Agricultural and Food Chemistry, 2019, 67(12): 3400-3411 CrossRef
  119. Hu Z., Ban Q., Hao J., Zhu X., Cheng Y., Mao J., Lin M., Xia E., Li Y. Genome-wide characterization of the C-repeat Binding Factor (CBF) gene family involved in the response to abiotic stresses in tea plant (Camellia sinensis). Frontiers in Plant Science, 2020, 11: 921 CrossRef
  120. Maritim T., Kamunya S., Mwendia C. Mireji P., Muoki R., Wamalwa M., Francesca S., Schaack S., Kyalo M., Wachira F. Transcriptome-based identification of water-deficit stress responsive genes in the tea plant, Camellia sinensis. Journal of Plant Biotechnology, 2016, 43(3): 302-310 CrossRef
  121. Parmar R., Seth R., Singh P., Singh G., Kumar S., Sharma R.K.  Transcriptional profiling of contrasting genotypes revealed key candidates and nucleotide variations for drought dissection in Camellia sinensis (L.) O. Kuntze. Scientific Reports, 2019, 9: 7487 CrossRef
  122. Zhang W.J., Liang Y.R., Zhang F.Z., Chen C.S., Zhang Y.G., Chen R.B., Weng B.Q. Effects on the yield and quality of oolong tea by covering with shading net. Journal of Tea Science, 2004, 4: 276-282 CrossRef
  123. Wang R., Zhou W., Jiang X. Reaction kinetics of degradation and epimerization of epigallocatechin gallate (EGCG) in aqueous system over a wide temperature range. Journal of Agricultural & Food Chemistry,2008, 56(8): 2694-2701 CrossRef
  124. Zheng X.Q., Jin J., Chen H., Du Y.Y., Ye J.H., Lu J.L., Lin C., Dong J.J., Sun Q.L., Wu L.Y., Liang Y.R. Effect of ultraviolet B irradiation on accumulation of catechins in tea (Camellia sinensis (L) O. Kuntze). African Journal of Biotechnology, 2008, 7(18): 3283-3287.
  125. Jeyaramraja P.R., Pius P.K., Kumar R.R., Jayakumar D. Soil moisture stress-induced alterations in bio constituents determining tea quality. Journal of the Science of Food and Agriculture, 2003, 83(12): 1187-1191 CrossRef
  126. Pritula Z.V., Velikiy A.V., Malyukova L.S. Plodovodstvo i yagodovodstvo Rossii, 2014, 38(2): 52-58 (in Russ.).
  127. Ding Z., Jia S., Wang Y., Xiao J., Zhang Y. Phosphate stresses affect ionome and metabolome in tea plants. Plant Physiology and Biochemistry, 2017, 120: 30-39 CrossRef
  128. Wang W., Xin H., Wang M., Ma Q., Wang L., Kaleri N.A., Wang Y., Li X. Transcriptomic analysis reveals the molecular mechanisms of drought-stress-induced decreases in Camellia sinensis leaf quality. Frontiers in Plant Science, 2016, 7: 385 CrossRef
  129. Wang Y.X., Liu Z.W., Wu Z.J., Li H., Zhuang J. Transcriptome-wide identification and expression analysis of the NAC gene family in tea plant [Camellia sinensis (L.) O. Kuntze]. PLoS ONE, 2016, 11(11): e0166727 CrossRef
  130. Chen X.H., Zhuang C.G., He Y.F., Wang L., Han G.Q., Chen C., He H.Q. Photosynthesis, yield, and chemical composition of Tieguanyin tea plants (Camellia sinensis (L.) O. Kuntze) in response to irrigation treatments. Agricultural Water Management, 2010, 97(3): 419-425 CrossRef
  131. Bai P., Wei K., Wang L., Zhang F., Ruan L., Li H., Wu L., Cheng H. Identification of a novel gene encoding the specialized alanine decarboxylase in tea (Camellia sinensis). Molecules, 2019, 24(3): 540 CrossRef
  132. Dong F., Hu J., Shi Y., Liu M., Zhang Q., Ruan J. Effects of nitrogen supply on flavonol glycoside biosynthesis and accumulation in tea leaves (Camellia sinensis). Plant Physiology and Biochemistry, 2019, 128: 48-57 CrossRef
  133. Kovalcik J., Klejdus B. Induction of phenolic metabolites and physiological changes in chamomile plants in relation to nitrogen nutrition. Food chemistry, 2014, 142: 334-341 CrossRef
  134. Liu M.Y., Burgos A., Zhang Q., Tang D., Shi Y., Ma L., Yi X., Ruan J. Analyses of transcriptome profiles and selected metabolites unravel the metabolic response to NH4+ and NO3− as signaling molecules in tea plant (Camellia sinensis L.). Scientia Horticulturae, 2017, 218: 293-303 CrossRef
  135. Lync J., Jonathan P., Clair S.B.S. Mineral stress: the missing link in understanding how global climate change will affect plants in real world soils. Field Crops Research, 2004, 90(1): 101-115 CrossRef
  136. Sun L., Liu Y., Wu L., Liao H. Comprehensive analysis revealed the close relationship between N/P/K status and secondary metabolites in tea leaves. ACS Omega, 2019, 4(1): 176-184 CrossRef
  137. Wei K., Liu M., Shi Y., Zhang H., Ruan J., Zhang Q., Cao M. Metabolomics reveal that the high application of phosphorus and potassium in tea plantation inhibited amino-acid accumulation but promoted metabolism of flavonoid. Agronomy, 2022, 12(5): 1086 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)