PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2021.5.968eng

UDC: 582.736:632.4:636.085.19

 

TOXINS OF MICROMYCETES IN GENERATIVE ORGANS OF PLANTS OF THE FAMILY Fabaceae

G.P. Kononenko , A.A. Burkin

All-Russian Research Institute for Veterinary Sanitation, Hygiene and Ecology — Branch of FSC ARRIEV RAS, 5, Zvenigorodskoe sh., Moscow, 123022 Russia,e-mail kononenkogp@mail.ru (✉ corresponding author), aaburkin@mail.ru

ORCID:
Kononenko G.P. orcid.org/0000-0002-9144-615X
Burkin A.A. orcid.org/0000-0002-5674-2818

Received July 18, 2021

During the study of the role of associated microscopic fungi in the adaptation of plants to external influences, researchers focus mainly on such key aspects as i) the shift in the composition of the internal mycobiota during growth, ii) the direction of fungal colonization of vegetative and generative organs, and iii) concomitant changes in the metabolic status of the plant organism (J.A., Wearn et al., 2012; V. Arbona et al., 2013; J. Hong et al., 2016). The dynamics of DNA accumulation of Alternaria, Cladosporium and Fusarium fungi in different months of plant growth was revealed in meadow grasses of the Fabaceae family (O.P. Gavrilova et al., 2017; A.S. Orina et al., 2018) and seasonal fluctuations in the content of toxic metabolites characteristic of these groups of micromycetes were found (A.A. Burkin, G.P. Kononenko, 2018, 2019). The predominant localization of mycotoxins in leaves was established for meadow clover, white clover, Caucasian goat’s rue, Washington lupine and melilot (G.P. Kononenko et al., 2019). In this study, we describe for the first time the complexes of toxic fungi metabolites in the generative organs of legumes. The aim of the work was to study the component composition and content of mycotoxins in the whole plants, flowers and beans of perennial legumes of 6 genera of the Fabaceae family. Meadow grasses of the genera Trifolium L. — meadow clover (T. pratense L.), alsike clover (T. hybridum L.), zigzag clover (T. medium L.), white clover (T. repens L.); of Lathyrus L. — meadow peavine (L. pratensis L.), spring peavine (L. vernus (L.) Bernh.); of Vicia L. — bush vetch (V. sepium L.), cow vetch (V. cracca L.); of Lotus L. — deer vetch (L. corniculatus L. s.l.); of Lupinus L. —Washington lupine (L. polyphyllus Lindl.), and of Galega L. — Caucasian goat’s rue (G. orientalis Lam.) were collected from natural grass stands of the Moscow region in May—the first half of August 2019, wood vetch (V. sylvatica L.) and Japanese peavine (L. japonicus Willd. subsp. pubescens Korobkov) — in the second half of August of the same year on of the Kandalaksha Gulf of the White Sea (Republic of Karelia). The aboveground parts of plants, as well as flowers and beans, were kept at room temperature to an air-dry state and crushed in a laboratory mill. For extraction, a mixture of acetonitrile and water was used (84:16 v/v) at the ratio of 10 ml per 1 g of the sample. Extracts after 10-fold dilution with a buffer solution were assessed using indirect competitive enzyme immunoassay. The content of the mycotoxins — T-2 toxin (T-2), deoxynivalenol (DON), zearalenone (ZEN), fumonisins (FUM), ergot alkaloids (EA), alternariol (AOL), roridin A (ROA), aflatoxin B1 (AB1), sterigmatocystin (STE), cyclopiazonic acid (CPC), emodin (EMO), ochratoxin A (OA), citrinin (CIT), mycophenolic acid (IFC), PR-toxin (PR) was determined using commercial and research certified enzyme immunoassay systems (GOST 31653-2012). For the generative organs of most of the examined plants, both common features (preservation of the mycotoxin profile typical of the whole plant, with the absence or decrease in the content of a number of fungal metabolites) and peculiarities were revealed. In particular, in the flowers of three species of the genus Trifolium L., in general, the mycotoxin complex characteristic of the vegetative part was preserved, but the occurrence and accumulation of fusariotoxins were higher. The flowers of two species — alsike clover and zigzag clover were characterized by combined contamination of OA and CIT in comparable quantities, rare for plants. With a general low contamination, fusariotoxins T-2, DON and ZEN were present only in generative organs in the deer vetch. In all representatives of the genera Vicia, Lathyrus, Lupinus, and Galega the metabolic background in flowers as a whole was found weakened, in beans it turned out to be similar to the aboveground part without a sharp variation in the content of mycotoxins.

Keywords: legumes, flowers, beans, mycotoxins, ELISA.

 

REFERENCES

  1. Saikkonen K., Faeth S.H., Helander M., Sullivan T.J. Fungal endophytes: a continuum of interactions with host plants. Annual Review of Ecology and Systematics, 2003, 29(1): 319-343 CrossRef
  2. Rodriguez R.J., White J.F.Jr., Arnold A.E., Redman R.S. Fungal endophytes: diversity and functional roles. New Phytologist, 2009, 182(2): 314-330 CrossRef
  3. Card S.D., Faville M.J., Simpson W.R., Johnson R.D., Voisey C.R., de Bonth A.C.M., Hume D.E. Mutualistic fungal endophytes in the Triticeae — survey and description. FEMS Microbiology Ecology, 2014, 88(1): 94-106 CrossRef
  4. Potshangbam M., Devi S.I., Sahoo D., Strobel G.A. Functional characterization of endophytic fungal community associated with Oryza sativa L. and Zea mays L. Frontiers in Microbiology, 2017, 8: 325 CrossRef
  5. Sánchez Márquez S., Bills G.F., Zabalgogeazcoa I. The endophytic mycobiota of the grass Dactylis glomerata. Fungal Diversity, 2007, 27: 171-195.
  6. Wearn J.A., Sutton B.C., Morley N.J., Gange A.C. Species and organ specificity of fungal endophytes in herbaceous grassland plants. Journal of Ecology, 2012, 100(5): 1085-1092 CrossRef
  7. Hodgson S., Cates C., Hodgson J., Morley N.J., Sutton B.C., Gange A.C. Vertical transmission of fungal endophytes is widespread in forbs. Ecology and Evolution, 2014, 4(8): 1199-1208 CrossRef
  8. Kusari S., Spiteller M. Metabolomics of endophytic fungi producing associated plant secondary metabolites: progress, challenges and opportunities. In: Metabolomics. U. Roessner (ed.). In Tech, London, 2012 CrossRef
  9. Arbona V., Manzi M., de Ollas C., Gómez-Cadenas A. Metabolomics as a tool to investigate abiotic stress tolerance in plants. International Journal of Molecular Sciences, 2013, 14(3): 4885-4911 CrossRef
  10. Hong J., Yang L., Zhang D., Shi J. Plant metabolomics: an indispensable system biology tool for plant science. International Journal of Molecular Sciences, 2016, 17(6): 767 CrossRef
  11. Gavrilova O.P., Orina A.S., Gagkaeva T.Yu. Agrokhimiya, 2017, 11: 58-66 CrossRef (in Russ.).
  12. Orina A.S., Gavrilova O.P., Gagkaeva T.Yu. Vestnik zashchity rastenii, 2018, 2(96): 35-41 (in Russ.).
  13. Kononenko G.P., Burkin A.A. Izvestiya Rossiiskoi akademii nauk. Seriya biologicheskaya, 2018, 2: 150-157 CrossRef (in Russ.).
  14. Burkin A.A., Kononenko G.P. Izvestiya Rossiiskoi akademii nauk. Seriya biologicheskaya, 2018, 3: 267-274 CrossRef (in Russ.).
  15. Kononenko G.P., Burkin A.A. Izvestiya Rossiiskoi akademii nauk. Seriya biologicheskaya, 2019, 3: 229-235 CrossRef (in Russ.).
  16. Bobusheva S.T., Doolotkel'dieva T.D. Fen Bilimleri Dergisi (Journal of Natural Science), 2008, 9: 1-8 (in Russ.).
  17. Kononenko G.P., Zotova E.V., Ustyuzhanina M.I.V sbornike: Uspekhi meditsinskoi mikologii [In: Advances in medical mycology]. Moscow, 2019, 20: 649-653 (in Russ.).
  18. Gubanov I.A., Kiseleva K.V., Novikov V.S., Tikhomirov V.N. Illyustrirovannyi opredelitel' rastenii Srednei Rossii. Tom 2 [Illustrated guide to plants of Central Russia. Volume 2]. Moscow, 2003 (in Russ.).
  19. Skvortsov V.E. Illyustrirovannoe rukovodstvo dlya botanicheskikh praktik i ekskursii v Srednei Rossii [Illustrated guide for botanical practices and excursions in Central Russia]. Moscow, 2004 (in Russ.).
  20. Inch S., Gilbert J. The incidence of Fusarium species recovered from inflorescences of wild grasses in southern Mannitoba. Canadian Journal of Plant Pathology,2003, 25(4): 379-383 doi: 10.1080/07060660309507093">CrossRef
  21. Harrow S.A., Farrokhi-Nejad R., Pitman A.R., Scott I.A.W., Bentley A., Hide C., Cromey M.G. Characterization of New Zealand Fusarium populations using a polyphasic approach differentiates the F. avenaceum/F. acuminatum/F. tricinctum species complex in cereal and grassland systems. Fungal Biology, 2010, 114(4): 293-311 CrossRef
  22. Postic J., Cosic J., Vrandecic K., Jurkovic D., Salch A.A., Leslie J.F. Diversity of Fusarium species isolated from weeds and plant debris in Croatia. Journal of Phytopathology, 2012, 160(2): 76-81 CrossRef
  23. Lofgren L.A., LeBlanc N.R., Certano A.K., Nachtigall J., LaBine K.M., Riddle J., Broz K., Dong Y., Bethan B., Kafer C.W., Kistler H.C. Fusarium graminearum: pathogen or endophyte of North American grasses? New Phytologist, 2017, 217(3): 1203-1212 CrossRef
  24. Burkin A.A., Kononenko G.P. Izvestiya Rossiiskoi akademii nauk. Seriya biologicheskaya, 2014, 3: 228-235 (in Russ.).
  25. Kononenko G.P., Burkin A.A. Peculiarities of feed contamination with citrinin and ochratoxin A. Agricultural Sciences, 2013, 4(1): 34-38 CrossRef
  26. Wawrzyniak J., Waskiewicz A. Ochratoxin A and citrinin production by Penicillium verrucosum on cereal solid substrates. Food Additives and Contaminants, Part A,2014, 31(1): 139-148 CrossRef
  27. Schmidt-Heydt M., Stoll D., Schütz P., Geisen R. Oxidative stress induces the biosynthesis of citrinin by Penicillium verrucosum at the expanse of ochratoxin. International Journal of Food Microbiology, 2015, 192: 1-6 CrossRef
  28. Geisen R., Schmidt-Heydt M., Touhami N., Himmelsbach A. New aspects of ochratoxin A and citrinin biosynthesis in Penicillium. Current Opinion in Food Science, 2018, 23: 23-31 CrossRef
  29. Larsen T.O., Svendsen A., Smedsgaard J. Biochemical characterization of ochratoxin A-producing strains of the genus Penicillium. Applied and Environmental Microbiology, 2001, 67(8): 3630-3635 CrossRef
  30. Burkin A.A., Kononenko G.P., Mosina L.V. The first mycotoxicological investigation of white mustard (Sinapis alba L.). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2019, 54(1): 186-194 CrossRef
  31. Moretti A., Logrieco A.F., Susca A. Mycotoxins: an underhand food problem. In: Mycotoxigenic Fungi. Methods and Protocols. A. Moretti, A. Susca (eds.). Humana Press, New York, NY, 2017: 3-12 CrossRef
  32. Ali H., Ries M.I., Nijland J.G., Lankhorst P.P., Hankemeier T., Bovenberg R.A.L., Vreeken R.J., Driessen A.J.M. A branched biosynthetic pathway is involved in production of roquefortine and related compounds in Penicillium chrysogenum. PLoS One, 2013, 8(6): e65328 CrossRef
  33. Santana M.F., Queiroz M.V.Transposable elements in fingi: A genomic approach. Scientific Journal of Genetics and Gene Therapy, 2015, 1(1): 012-016.
  34. Blagoveshchenskaya E.Yu. V sbornike: Mikologiya segodnya /Pod redaktsiei Yu.T. D'yakova, A.Yu. Sergeeva [In: Mycology today. Yu.T. D'yakov, A.Yu. Sergeev (eds.)]. Moscow, 2011, 2: 126-134 (in Russ.).
  35. van Kan J.A.L., Shaw M.W., Grant-Downton R.T. Botrytis species: relentless necrotropic thugs or endophytes gone roque? Molecular Plant Pathology, 2014, 15(9): 957-961 CrossRef
  36. Busby P.E., Ridout M., Newcombe G.Fungal endophytes: modifiers of plant disease. Plant Molecular Biology,2016, 90(6): 645-655 CrossRef
  37. Harrison J.G., Griffin E.A. The diversity and distribution of endophytes across biomes, plant phylogeny and host tissues: how far have we come and where do we go from here? Environmental Microbiology, 2020, 22(6): 2107-2123 CrossRef
  38. Vorob’eva I., Toropova E. Fungi ecological niches of the genus Fusarium Link. Bio Web of Conferences, 2020, 24: 00095 CrossRef
  39. Orina A.S., Gavrilova O.P., Gagkaeva T.Yu. Zashchita i karantin rastenii, 2017, 3: 25-27 (in Russ.).
  40. Chub V.V. Fiziologiya rastenii. Glava 7. Rost i razvitie rastenii. 2003 [Plant physiology]. Available: https://web.archive.org/web/20070120092003/http://herba.msu.ru/russian/
    departments/physiology/spezkursi/chub/index_7.html. No date (in Russ.).

 

back