doi: 10.15389/agrobiology.2016.5.645eng

UDC 633.15:581.192:58.08:535-1

 

IDENTIFICATION OF CHARACTERISTIC ORGANIC MOLECULES IN KERNELS OF MAIZE (Zea mays L.) HYBRID GRAIN USING INFRARED SPECTROSCOPY

Ch. Radenovich1, 2, G.V. Maksimov3, E.V. Tyutyaev4, V.V. Shutova4,
N. Delich1, 3, Z. Chamdzhiya1, Yo. Pavlov1, Zh. Jovanovich1

1Maize Research Institute, Zemun Polje, ul. Slobodana Bajicha 1, 11185 Belgrade-Zemun, Serbia,
e-mail radenovic@sbb.rs;
2Faculty of Physical Chemistry, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia,
e-mail radenovic@sbb.rs;
3M.V. Lomonosov Moscow State University, Biological Faculty, 1/12, Leninskie gory, Moscow, 119234 Russia,
e-mail gmaksimov@mail.ru;
4N.P. Ogarev Mordovia State University, 68, Bol’shevistskaya ul., Saransk, Republic of Mordovia, 430005 Russia

Received June 30, 2015

 

Modern biophysical methods have provided a breakthrough in investigations of the status and functions of the intact plants at the molecular level. The infrared (IR) spectroscopy allows us to analyze the molecular composition and structure by recording the absorption of infrared radiation as a function of frequency of valent and deformation vibrations (wavenumber, cm-1) for chemical bonds. We used the IR Fourier spectroscopy method (IR spectra with Fourier Transformation,) to investigated the grain composition in maize hybrids — ZP 341, ZP 434 and ZP 505 created at Maize Research Institute (Zemun Polje, Belgrade, Serbia). The resulted spectra differed in peak number and intensity, and in oscillation frequency. Particularly, there are 20 to 23 peaks and characteristic spectral bands within the wavenumber range of 400 to
4000 сm-1. Characteristic spectral bands were analyzed for each hybrid with regard to absorption intensity in %, experimentally determined wavenumber in cm-1, and published wavenumber range. A comparison of these peaks to reference IR spectra from databases revealed biogenic organic molecules: alcohols, amines, esters, alkanes, carboxylic acids, alkenes, aldehydes, ketones and esters in the studied grain hybrids. In a typical IR spectrum of maize hybrid ZP 341 there were three most distinct bands with wavenumbers of 3400, 2900 and 1000 cm-1. Four peaks (3400, 2950, 1700 and 1000 сm-1) were characteristic of the ZP 434 hybrid, and eight major peaks of 3400, 2900, 2850, 1750, 1700, 1450, 1150 and 1000 сm-1 were observed in ZP 505. That is, the grain charterisics in ZP 505 slightly differ from those in ZP 341 and  ZP 434, whereas in ZP 341 and ZP 434 the grain structure is more similar. In general, Serbian hybrids are characterized by high quality, productivity and technological suitability. The developed methodology for IR spectra recording and analysis in grain allows to reveal the composition and structure of biogenic compounds. It is important not only for diagnosis and breeding, but also for the development of biotechnological screening methods, or the estimation of grain storage time.

Keywords: maize hybrids, grain, molecular structural characteristics, infrared spectra, spectral bands.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES 

  1. Ribnikar S. Infracrvena i Ramanska spektroskopija. In.: Fizickohemijske metode. Beograd, 1985: 251-266.
  2. Krimm S., Bandekar J. Vibrational spectroscopy and conformation of peptides, polypeptides and proteins. Adv. Protein Chem., 1986, 38: 181-364.
  3. Vasilev A., Hriyenko E.V., Shchukin A.O. Infrared spectroscopy of organic and natural products. St. Petersburg, 2007: 1-30.
  4. Tarasevich B.N. IK-spektry osnovnykh klassov organicheskikh soedinenii [IR-spectra of major classes of organic compounds]. Moscow, 2012 (in Russ.).
  5. Sverdlov L.M., Kovner M.A., Krainov E.P. Kolebatel'nye spektry mnogoatomnykh molekul [Vibrational spectra of polyatomic molecules]. Moscow, 1970 (in Russ.).
  6. Vollhardt P.C., Schore N.E. Organic shemistry. W.H. Freeman and Company, United States, 1996.
  7. Kukuruza na poroge tret'ego tysyacheletiya — Vospominaniya, rasskazy i prognozy /Pod redaktsiei Ch. Radenovicha, M. Somboratsa [Corn on the threshold of the third millennium — Memories, stories and forecasts. Ch. Radenovich, M. Somborac (eds.)]. Institut kukuruzy «Zemun Pole», Belgrad, 2000.
  8. Granado F., Olmedilla B., Blanco I. Nutritional and clinical relevance of lutein in human health. Brit. J. Nutr., 2003, 90: 487-502 CrossRef
  9. Vollhardt P.C., Schore N.E. Organic shemistry. W.H. Freeman and Company, USA, 1996.
  10. Corn: chemistry and technology. P.J. White, L.A. Johnson (eds.). Minnesota, USA, 2003: 71-101.
  11. Radenovic C., Jeremic M., Maksimov G.V., Filipovovic M., Trifunovic B.V., Mišovic M.M. Mogucnost korišcenja ramanske spektroskopije u proucavanju otpornosti inbred linija kukuruza prema uslovima stresa. Savremena poljoprivreda, 1994, 42(1-2): 5-19.
  12. Radenovic C., Jeremic M., Maksimov G.V., Mišovic M.M., Trifunovic B.V.  Resonance Raman spectra of carotenoids in the maize seed tissue — a new approach in studies on effect of temperatures and other environmental factors on the state of vital functions. J. Sci. Agric. Res., 1994, 55(4): 33-47.
  13. Radenovic C., Jeremic M., Maksimov G.V., Mišovic M.M., Selakovic D., Trifunovic B.V. Rezonantni ramanski spektri semena kukuruza i njihova primena u proucavanju zivotnih funkcija. In: Oplemenjivanje, proizvodnja i iskorišcavanje kukuruza — 50 godina Instituta za kukuruz «Zemun Polje». Beograd, 1995: 291-296.
  14. Radenovic C., Jeremic M., Maksimov G.V., Mišovic M.M., Selakovic D.  Resonance Raman spectra of carotenoids in the maize kernel — a contribution to the evaluation of the kernels resistance to the temperature and the chemical composition of soil. Proceedings for Natural Science, Matica Srpska (Novi Sad), 1998, 95: 41-50.
  15. Maksimov G.V., Radenovich N., Borisova Yu.E., Eremich M.K. Biofizika, 1996, 41: 400-406 (in Russ.).
  16. Liu R.H. Whole grain phytochemicals and health. Journal of Cereal Science, 2007, 46: 207-219 CrossRef
  17. Radosavljevic M., Bekric V., Bozovic I., Jakovljevic J. Physical and chemical properties of various corn genotypes as a criterion of technological quality. Genetika, 2000, 32(3): 319-329.
  18. Videnovic Z., Simic M., Srdic J., Dumanovic Z. Long term effects of different soil tillage systems on maize (Zea mays L.) yields. Plant, Soil and Environment, 2011, 57(4): 186-192.
  19. Instruction manual user system guide IRPrestige-21 (P/N 206-72010) Shimadzu Fourier transform infrared spectrophotometer. Shimadzu Corporation, Kyoto, Japan (http://www.shimadzu.com).
  20. Instruction manual user system guide IRPrestige-21 (P/N 206-72010) Shimadzu Fourier transform infrared spectrophotometer, Fig. 1.8. Shimadzu Corporation, Kyoto, Japan, pp. 1-11.
  21. Radenovich Ch., Maksimov G.V., Tyutyaev E.V., Shutova V.V., Delich N.S., Sechanski M.D., Popovich A.S. Selekcija i semenarstvo, 2014, XX(2): 13-31 (in Russ.).
  22. Radenovic C., Maksimov G.V., Delic S.N., Stankovic J.G., Secanski D.M., Pavlovic D.M., Mitic N. Infrared spectroscopy analysis of the maize grain chemical content. Proc. 12th International Conference onfundamental and applied aspects of physical chemistry «Physical shemistry 2014». Serbia, Belgrade, 2014. V. II: 530-533.
  23. Radenovic C., Maksimov G.V., Grodzinskij M.D. Identification of organic molecules in kernels of maize inbred lines displayed with infrared spectra. Plant Physiology and Genetics (Kiev, Ukraine), 2015, 47(1/273): 15-24.
  24. Corn: shemistry and technology. P.J. White, L.A. Johnson (eds.). American Association of Cereal Chemists, Minnesota, USA, 2003: 71-101.

back