doi: 10.15389/agrobiology.2016.5.627eng

UDC 633.11:575.1:631.527(571.12)

 

THE THEORETICAL JUSTIFICATION OF INTENSIVE GENETIC POTENTIAL OF THE VARIETIES OF SOFT WHEAT

V.V. Novokhatin

Research Institute of Agriculture for Northern Zayral’e, Federal Agency of Scientific Organizations, 2, ul. Burlaki, pos. Moskovskii, Tyumen Region, Tyumen Province, 625501 Russia,
e-mail natalya_sharapov@bk.ru

Received October 8, 2015

 

Wheat, a hexaploid originated in Anterior (N.I. Vavilov, 1926) and the Central Asia (P.M. Zhukovsky, 1971), was widely spread and grown beyond the Fertile Crescent northerly and southerly. In this, cold resistant wheat and drought resistant spring forms have been originated in the course of unconscious selection (N.I. Vavilov, 1926; Qing-Ming Sun, et al., 2009), and nowadays bread wheat is a dominant cereals cultivated worldwide (N.P. Goncharov, 2013). Analysis of origin of the soft wheat intensive breeds shows that more than 150 years, they were formed on the basis of the genetic material the secondary (P.A. Gepts, 2002; G.M. Paulsen, J.P. Shroyer, 2008), induced the peripheral centers with huge potential (R. Vencovsky, J. Crossa, 2003; S. Cox, 2009). Akagomughi, a short-strawed Japanese variety became the basis of intensive selection (N.I. Vavilov, 1987). A successful combination of genetic associations in derivatives of Hungarian (Banatka), Russian (Krymka), local Galician, English squarehead wheat and Chinese dwarfish wheat made it possible to create a high-yielding, adaptive intensive winter wheat variety Bezostaya 1.It was widely involved in the breeding for intensive yield production resulting in the best intensive high-yielding varieties of winter soft wheat. In the 1970s, these varieties were used to produce new spring wheat intensive varieties, such as winter-and-spring wheat Kazakhstanskaya 10 and spring variety Ikar. Note that the use of vernalized seeds of winter wheat for hybridization is not desirable because of temperature-induced mutations reducing the genetic value of the original forms. In crossing winter crops with spring crops it is necessary to allow them to pass flowering phase simultaneously (V.V. Novohatin et al., 2014). Discrete inheritance in each variety leads to certain changes in its biological, morphological, physiological and bio-climatic properties reflecting evolutionary direction in plant breeding. For example, Kazakhstanskaya 10, created by hybridization of 39 varieties of which 23 one were winter wheat varieties possesses a well-developed, deep penetrating root system (243 cm), is tolerant to salinization, pre-harvest sprouting and fusariosis. Its potential yield under irrigation is 8.02 t/ha. The variety is common in Central Asia and the south-east Kazakhstan, Bashkortostan, Kurgan and Tyumen regions. The variety Kazakhstanskaya 10 is involved  in many breeding programs. As a result, a middle-ripening, medium-height, resistant to lodging and pre-harvest sprouting, intensive Ikar variety (winter wheat Bogarnaya 56 × Kazakhstanskaya 10) (Pyrotrix) been created which genealogy includes 59 varieties of different ecological origin. Its distinctive features (the pubescence and dark-colored ears) contribute to the accelerated maturation of the grain, which is very important for Siberia and Trans-Ural Region. Data on full genealogy of created varieties allows us to control the hybridization of parental pairs when creating the desired genotypes and ecotypes.

Keywords: wheat, environment, gеnome, population, breeding, variety, area, primary and secondary centers, mutations, hybridization, transgressions, evolution.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. Migusheva E.F. Trudy po prikladnoi botanike, genetike i selektsii, 1975, 55(3): 3-26 (in Russ.).
  2. Lelli Ya. Selektsiya pshenitsy [Wheat breeding]. Moscow, 1980 (in Russ.).
  3. Goncharov N.P. Vavilovskii zhurnal genetiki i selektsii, 2013, 17(4/2): 884-889 (in Russ.).
  4. Vavilov N.I. Tsentry proiskhozhdeniya kul'turnykh rastenii [Centers of origin of crop plants]. Leningrad, 1926 (in Russ.).
  5. Zhukovskii P.M. Kul'turnye rasteniya i ikh sorodichi [Crop wild relatives]. Leningrad, 1971 (in Russ.).
  6. Dvorak J., Luo M.-C., Akhunov E.D. N.I. Vavilov's theory of centres of diversity in the light of current understanding of wheat diversity, domestication and evolution. Czech J. Genet. Plant Breed., 2011, 47(Special issue): 20-27.
  7. Witcombe J.R. Methodologies for generating variability. Part 3. The development of base populations and their improvement by recurrent selection. Plant breeding and farmer participation. Rome, 2009: 139-157.
  8. Srinivasan C.S., Thirtle C., Palladino P. Winter wheat in England and Walles, 1923-1995: what do indices of genetic diversity reveal? Plant genetic resources: charac­terization and utilization, 2003, 1(1): 43-57 CrossRef
  9. Sun Q.M., Zhou R.H., Gao L.F., Zhao G.Y., Jia J.Z. The characterization and geographical distribution of the genes responsible for vernalization requirement in Shinese bread wheat. J. Integr. Plant Biol., 2009, 51(4): 423-432 CrossRef
  10. Gepts P. A comparison between crop domestication, classical plant breeding, and genetic engineering. Crop Sci., 2002, 42(6): 1780-1790 CrossRef
  11. Paulsen G.M., Shroyer J.P. The early history of wheat improvement in the great plains. Agronomy Journal, 2008, 100: 70-78.
  12. Vencovsky R., Crossa J. Measurements of representativeness used in genetic resources conservation and plant breeding. Crop Sci., 2003, 43(6): 1912-1921 CrossRef
  13. Sokh S. Crop domestication and the first plant breeders. In: Plant breeding and farmer participation. S. Ceccarelli, E.P. Guimarães, E. Weltizien (eds.). Rome, 2009: 1-26.
  14. Dochev V., Penchev E. Relationship between the structural elements and grain yield in winter wheat varieties, grown under various climatic conditions. Rasteniev"dniNauki (Bolgariya), 2012, 49(5): 8-12.
  15. Novokhatin V.V. V sbornike: Agrarnaya nauka i obrazovanie v usloviyakh agrarnoi reformy v Tyumenskoi oblasti: problemy, poiski, reshenie [In: Agricultural science and education in Tyumen region: challenges and approaches]. Tyumen', 1997 (in Russ.).
  16. Annicchiarico P. Coping with and exploiting genotype-by environment interacttions. In: Plant breeding and farmer participation. S. Ceccarelli, E.P. Guimarães, E. Weltizien (eds.). Rome, 2009: 519-564. 
  17. Dopierala P., Kordas L. The effects of genotype-environment interaction on the yield and its structure in some winter cereals. Biuletyn Instytutu Hodowli i Aklimatyzaji Roslin (Warszawa), 2009, 253: 165-173.
  18. Mohammadi R., Armion M., Sadeghzadeh D., Amri A., Nachit M. Analysis of genotype-by-environment interaction for agronomic traits of durum wheat in Iran. Plant Product. Sci., 2011, 14(1): 15-21 CrossRef
  19. Novokhatin V.V., Shelomentseva T.V. Vestnik Rossiiskoi akademii sel'skokhozyaistvennykh nauk, 2014, 4: 14-17 (in Russ.).
  20. Hildermann I., Messmer M., Kunz P., Pregitzer A., Boller T., Wiemken A., Mäder P. Sorte ½ Umwelt — Interaktionen von Winterweizen im biologischen Landbau. Proc. 18 assemblée annuelle de la Société Suisse d'Agronomie (SSA) «Innovation im Pflanzenbau: von der Idee zur Umsetzung» (Zollikofen, 2010). Bulletin SGPW/SSA, 2010, 23: 163-165.
  21. Dragavtsev V.A. V sbornike: Sovremennoe sostoyanie i priobretennye napravleniya razvitiya genetiki, epigenetiki, selektsii i semenovodstva sel'skokhozyaistvennykh kul'tur [In: Current state and research areas of genetics, epigenetics, breeding research and seed production of crop plants]. Novosibirsk, 2013: 42-47 (in Russ.).
  22. Zhukovskii P.M. Pshenitsa v SSSR [Wheats in the USSR]. Moscow, 1957 (in Russ.).
  23. Levin S.A., Muller-Landau H.C., Nathan R., Chave J. The ecology and evolution of seed dispersal: a theoretical perspective. Annual Review of Ecology, Evolution, and Systematics, 2003, 34: 575-604.
  24. Knupffer H. The Balkan collections 1941-1942 of Hans Stubbe in the Gatersleben Gene Bank. Czech J. Genet. Plant Breed., 2010, 46(Special issue): 27-33.
  25. Dotlacil L., Hermuth J., Stehno Z., Dvorácek V., Bradová J., Leišová L. How can wheat landraces contribute to present breeding? Czech J. Genet. Plant Breed., 2010, 46(Special issue): 70-74.
  26. Torricelli R., Bernacchi M., Falcinelli M. Missioni finalizzate alia collezione di risorse genetiche agrarie nel territorio dell’Ucraina occidentale. dal Seme, 2010, 5(1): 50-57.
  27. Vavilov N.I. Teoreticheskie osnovy selektsii [Theoretical bases for pant breeding]. Moscow, 1987 (in Russ.).
  28. Ushiyama T., Nakamura K., Anas, Yoshida T. Pedigree analysis of early maturing wheat cultivars in Japan for breeding cultivars with higher performance. Plant Prod. Sci., 2009, 12(1): 80-87 CrossRef
  29. Pshenitsy mira /Pod redaktsiei D.D. Brezhneva [World wheats. D.D. Brezhnev (ed.).]. Leningrad, 1976 (in Russ.).
  30. Luk'yanenko P.P. Selektsiya i semenovodstvo ozimoi pshenitsy [Winter wheat breeding and seed production]. Moscow, 1973 (in Russ.).
  31. Urazaliev  R.A. Vestnik sel'skokhozyaistvennoi nauki Kazakhstana, 1997, 2: 22-29 (in Russ.).
  32. Sozinov A.A., Kirichenko F.G., Bardanov  M.I. Novyi sort ozimoi pshenitsy Priboi [Priboi, a new winter wheat variety]. Odessa, 1973 (in Russ.).
  33. Dorofeev V.F., Yakubtsiner M.M., Semenova L.V. et al. Vysokokachestvennye pshenitsy [High-quality wheats]. Leningrad, 1972 (in Russ.).
  34. Programma kompleksnogo selektsionno-semenovodcheskogo tsentra po rastenievodstvu GNU NIISKH Severnogo Zaural'ya na period 2011-2030 gg. /Pod redaktsiei V.V. Novokhatina. [A complex center for crop plant breeding and seed production in North Zauralie Research Institute (program for 2011-2030). V.V. Novokhatin (ed.)]. Tyumen', 2011: 22-51 (in Russ.).
  35. Witcombe J.R., Virk D.S. Methodologies for generating variability. Part 2. Selection of parents and crossing strategies. Plant breeding and farmer participation. S. Ceccarelli, E.P. Guimarães, E. Weltizien (eds.). Rome, 2009: 129-138.
  36. Hede A.R., Skovmand V., Reynolds M.P., Crossa J., Vilhelmsen A.L., Stolen O. Evaluating genetic diversity for heat tolerance traits in Mexican wheat landraces. Genet. Res. Crop Evolut., 1999, 46(1): 37-45.
  37. Börner A., Landjeva S., Salem K.F.M., Lohwasser U. Plant genetic resources — a prerequisite for drought tolerance breeding in cereals. Proc. Jahrestagung der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs (24-26 November 2009). Raumberg-Gum-penstein, 2010: 11-13.
  38. David M. Water loss from excised leaves in a collection of Triticum aestivum and Triticum durum cultivars. Romanian Agricultural Research, 2010, 27: 27-34.
  39. Zhuchenko A.A., Korol' A.B. Rekombinatsiya v evolyutsii i selektsii [Recombination in evolution nd breeding]. Moscow, 1985 (in Russ.).
  40. Fujimura S., Shi P., Iwama K., Zhang X., Gopal J., Jitsuyama Y. Comparison of growth and grain yield of spring wheat in  Lhasa,  the  Tibetan  Plateau,  with  those  in  Sapporo, Japan. Plant Prod. Sci., 2009, 12(1): 116-123 CrossRef
  41. Malik A.H., Prieto-Linde M.L., Kuktaite R., Andersson A., Johansson E. Individual and interactive effects of genetic background and environmental conditions on amount and size distribution of polymeric proteins in wheat grain. Czech J. Genet. Plant Breed., 2011, 47(Special issue): 186-189.
  42. Haberle J., Holzapfel J., Hartl L. Die Genetik der Fusariumresistenz in europaischem Winterweizen. In: Abwehrstrategien gegen biotische Schaderreger, Zuchtung von Hackfruchten und Sonderkulturen. Irdning, 2009: 5-8.
  43. Kosova K., Chrpova J., Sip V. Cereal resistance to Fusarium head blight and possibilities of its improvement  through  breeding. Czech J. Genet. Plant Breed., 2009, 45(3): 87-105.
  44. El-Hendawy S.E., Ruan Y., Hu Y., Schmidhalter U. A comparison of screening criteria for salt tolerance in wheat under field and controlled environmental conditions. Journal of Agronomy & Crop Science, 2009, 195(5): 356-367 CrossRef
  45. Guo R., Wu Q., Liu Y. Single-plant similarity-difference selection in wheat breeding. Advance Journal of Food Science and Technology, 2013, 5(11): 1413-1417.

back