PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2023.4.598eng

UDC: 636.2.034:637.045:577.112

Acknowledgements:
Prepared as part of the state task of the Laverov Federal Center for Integrated Arctic Research, Ural Branch of RAS “Development of a system for the production of high-quality and environmentally safe dairy products on the territory AZ RF based on the genotyped breeding animals” (FUUW-2021-0005) (registration number – 121122800216-6).

 

Bos taurus β-CASEIN: PROTEIN STRUCTURE, GENE POLYMORPHISM, EFFECT ON THE HUMAN GASTROINTESTINAL TRACT (review)

T.A. Tokarchuk, I.S. Kozhevnikova ✉, M.A. Kudrina

Laverov Federal Center for Integrated Arctic Research, the Ural Branch of RAS, 20, Nikolsky prosp., Arkhangelsk Province, Arkhangelsk, 163020 Russia, e-mail 1711tantan@gmail.com, kogevnikovais@yandex.ru (✉ corresponding author), sharova-marina1999@mail.ru

ORCID:
Tokarchuk T.A. orcid.org/0009-0005-1163-8856
Kudrina M.A. orcid.org/0000-0002-8255-2989
Kozhevnikova I.S. orcid.org/0000-0001-7194-9465

Final revision received August 3, 2022
Accepted December 14, 2022

 

High-quality food products play an important role in a healthy lifestyle in the modern world. Cow’s milk and milk products contain all the essential nutrients. The main components of milk are water, fat, protein, lactose, minerals, vitamins, etc. (P.C. Wynn et al., 2013). With the advent of A2 milk on the market, which reduces the symptoms of lactose intolerance and has good digestibility, the population’s demand for this product began to grow. A2 milk is obtained from cows of the A2 genotype for β-casein. Cow's milk is 3.5 % protein (P. Feng et al., 2020). Casein is the most important protein component of milk and makes up about 80 % of the total protein composition of cow’s milk. Casein consists of four fractions, the αs1, αs2, β and κ. β-Casein is a protein that is one of the main ones in cow’s milk and makes up most of all casein. b-Casein consists of 209 amino acid residues, of which 16.7 % is proline, evenly distributed over the polypeptide, which limits the formation of the a-helix (S. Pattanayak, 2013). More than 95 % of casein in milk is in micellar form. The b-casein gene has 13 allelic variants, among which types A1 and A2 are the most studied, differing in the sequence of amino acids in the primary structure. Since the primary structure of the protein is different, A1 and A2 β-caseins broken down in the human gastrointestinal tract form different bioactive peptides. For A1 allele, β-casomorphin-7, a peptide consisting of seven amino acid residues is formed. The level of this peptide is 4 times higher in A1 milk than in A2 milk. When using milk containing β-casein type A1, 12 h after consumption, people may experience bloating, abdominal pain, flatulence, heaviness in the stomach, changes in the frequency and consistency of stools, in some cases, symptoms of celiac disease. Consumption of milk containing type A1 β-casein leads to a significantly longer transit time through the gastrointestinal tract (6.3 hours longer), inflammation of the small intestine and inflammation of the gastric mucosa compared to drinking milk containing A1 type of β-casein. People with lactose intolerance have adverse gastrointestinal symptoms after drinking milk, which may be associated with the presence of β-casein A1 in milk, and not with lactose itself (H. Brüssow, 2013; D. Hu et al., 2014). Unlike variant A1, β-casein A2 increases 2-gold the natural production of glutathione, one of the most important antioxidants of the human body.

Keywords: casein, β-casein, A1 milk, A2 milk, cow’s milk, milk proteins.

 

REFERENCES

  1. Wynn P.C., Sheehy P.A. Minor proteins, including growth factors. In: Advanced Dairy Chemistry. P. McSweeney, P. Fox (eds.). Springer, Boston, MA, 2013, 1A: 317-335 CrossRef
  2. Kovalyuk N.V., Satsuk V.F., Machul’skaya E.V., Shakhnazarova Yu.Yu. Еffektivnoe zhivotnovodstvo, 2018, 5(144): 22-23 (in Russ.).
  3. Chaitskiy A.A., Baranova N.S. Vestnik APK Verkhnevolzh’ya, 2021, 2(54): 22-28 CrossRef (in Russ.).
  4. Valitov F.R. Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta, 2017, 1(63): 207-209 (in Russ.).
  5. Sheyko I.P., Klimets N.V., Pesotskiy N.I., Shemetovets Zh.I. Aktual’nye problemy intensivnogo razvitiya zhivotnovodstva, 2022, 25-1: 40-46 (in Russ.).
  6. Paramonova M.A., Valitov F.R., Ganieva I.N. Sbornik nauchnykh statey po itogam mezhdunarodnoy nauchno-prakticheskoy konferentsii «Sovremennye nauchnye gipotezy i prognozy: ot teorii k praktike» [Proc. Int. Conf. «Modern scientific hypotheses and forecasts: from theory to practice»]. St. Petersburg, 2021: 84-86 (in Russ.).
  7. Epishko O.A., Peshko V.V., Tanana L.A., Peshko N.N., Mazurek B.G. MaterialyMezhdunarodnoynauchno-prakticheskoykonferentsii «Vklad nauki i praktiki v obespechenie prodovol’stvennoy bezopasnosti strany pri tekhnogennom ee razvitii» [Proc. Int. Conf. «The contribution of science and practice to ensuring the country's food security during its technogenic development»]. Bryansk, 2021: 114-117 (in Russ.).
  8. Tyul’kin S.V. Pishchevye sistemy, 2018, 1(3): 38-43 (in Russ.).
  9. Giglioti R., Gutmanis G., Katiki L.M., Okino C.H., de Sena Oliveira M.C., Vercesi Filho A.E. New high-sensitive rhAmp method for A1 allele detection in A2 milk samples. Food Chemistry, 2020, 313: 126167 CrossRef
  10. Fox P.F., Uniacke-Lowe T., McSweeney P.L.H., O'Mahony J.A. Milk Proteins. In:Dairy chemistry and biochemistry. Springer, Cham, 2015: 145-239 CrossRef
  11. Gorbatova K.K., Gun’kova P.I. Biokhimiya moloka i molochnykh produktov [Biochemistry of milk and dairy products]. St. Petersburg, 2010 (in Russ.).
  12. Ristanic M., Glavinic U., Vejnovic B., Maletic M., Kirovski D., Teodorovic V., Stanimirovic Z. Beta-casein gene polymorphism in Serbian holstein-friesian cows and its relationship with milk production traits. Acta Veterinaria, 2021, 70(4): 497-510 CrossRef
  13. Sarode A.R., Sawale P.D., Khedkar C.D., Kalyankar S.D., Pawshe R.D. Casein and caseinate: methods of manufacture. In: Encyclopedia of food and health. A.R. Sarode (ed.). Academic Press, 2016: 676-682 CrossRef
  14. Jaiswal K., De S., Sarsavan A. Detection of single nucleotide polymorphism by T-ARMS PCR of cross bred cattle Karan Fries for A1, A2 beta casein types. International Journal of Scientific Research in Biological Science, 2014, vol. 1: 18-22.
  15. Haq M.R.U., Kaplia R., Sharma R., Saliganti V., Kapila S. Comparative evaluation of cow β-casein variants (A1/A2) consumption on Th2-mediated inflammatory response in mouse gut. European Journal of Nutrition, 2013, 53(4): 1039-1049 CrossRef
  16. Bhat M.Y., Dar T.A., Singh L.R. Casein proteins: structural and functional aspects. In:Gigli I, ed. Milk Proteins – From Structure to Biological Properties and Health Aspects. InTechOpen, UK, 2016: 1-18 CrossRef
  17. Pattanayak S. Human health impact of bovine betacasomorphin-7 of milk – a question for milk products or our breeding policy? Exploratory Animal and Medical Research, 2013, 3(2): 93-94.
  18. Rangel A.H.N., Zaros L.G., Lima T.C., Borba L.H.F., Novaes L.P., Mota L.F.M., Silva M.S. Polymorphism in the Beta Casein Gene and analysis of milk characteristicsin Gir and Guzerà dairy cattle. Genetics and Molecular Research, 2017, 16(2): 16029592 CrossRef
  19. de Vitte K., Kerziene S., Klementavičiūtė J., de Vitte M., Mišeikienė R., Kudlinskienė I., Čepaitė J., Dilbiene V., Stankevičius R. Relationship of β-casein genotypes (A1A1, A1A2 and A2A2) to the physicochemical composition and sensory characteristics of cows’ milk. Journal of Applied Animal Research, 2022, 50(1): 161-166 CrossRef
  20. Andiç S., Ayaz R.M., Oğuz Ş. A1 milk and beta-casomorphin-7. Food Health, 2021, 7(2): 128-137 CrossRef
  21. Miluchová M., Gábor M., Trakovická A. Analysis of beta-casein gene (CSN2) polymorphism in different breeds of cattle. Scientific Papers Animal Science and Biotechnologies, 2014, 47: 56-59.
  22. Tepel A. Khimiya i fizika moloka [Chemistry and physics of milk]. St. Petersburg, 2021 (in Russ.).
  23. Singh L.V., Jayakumar S., Sharma A., Gupta S.K., Dixit S.P., Gupta N., Gupta S.C. Comparative screening of single nucleotide polymorphisms in β-casein and κ-casein gene in different livestock breeds of India. Meta Gene, 2015, 4: 85-91 CrossRef
  24. Feng P., Ding X., Gao T., Du R., Chen H. Determination of A2 β-casein and total β-casein in cow milk and milk powder by capillary zone electrophoresis. Chinese Journal of Chromatography (Se Pu), 2020, 38(6): 722-729.
  25. Kay S.-I.S., Delgado S., Mittal J., Eshraghi R.S., Mittal R., Eshraghi A.A. Beneficial Effects of Milk Having A2 β-Casein Protein: Myth or Reality? The Journal of Nutrition, 2021, 151(5): 1061-1072 CrossRef
  26. Kovalyuk N.V., Satsuk V.F., Kovalyuk M.A., Machul’skaya E.V. Genetika i razvedenie zhivotnykh, 2019, 1: 22-26 (in Russ.).
  27. Mayer H.K., Lenz K., Halbauer E.-M. “A2 milk” authentication using isoelectric focusing and different PCR techniques. Food Research International,2021, 147: 110523 CrossRef
  28. Roin N.R., Larsen L.B., Comi I., Devold T.G., Eliassen T.I., Inglingstad R.A., Vegarud G.E., Poulsen N.A. Identification of rare genetic variants of the αS-caseins in milk from native Norwegian dairy breeds and comparison of protein composition with milk from high-yielding Norwegian Red cows. Journal of Dairy Science, 2022, 105(2): 1014-1027 CrossRef
  29. Bielecka M., Cichosz G., Czeczot H. Antioxidant, antimicrobial and anticarcinogenic activities of bovine milk proteins and their hydrolysates. International Dairy Journal, 2022, 127: 105208 CrossRef
  30. Khitsenko A.V., Rogozinnikova I.V. Molodezh’ i nauka, 2019, 3: 96-101 (in Russ.).
  31. Rocha-Mendoza D., Jiménez-Flores R. Casein nomenclature, structure, and association. In: Encyclopedia of dairy sciences (Third Edition). P.L.H. McSweeney, J.P. McNamara (eds.). Academic Press, 2022 CrossRef
  32. Faĭzullin D.A., Konnova T.A., Haertle T., Zuev I. Self-association and secondary structure of beta-casein. Russian Journal of Bioorganic Chemistry, 2013, 39(4): 366-372 CrossRef
  33. Yang T., Liu D., Zhou P. Temperature-dependent dissociation of human micellar β-casein: Implications of its phosphorylation degrees and casein micelle structures. Food Chemistry, 2022, 376: 131935 CrossRef
  34. Hernell O. Human milk vs. cow’s milk and the evolution of infant formulas. Nestlé Nutrition Institute Workshop Series: Pediatric Program, 2011, 67: 17-28 CrossRef
  35. Gallinat J.L., Qanbari S., Drögemüller C., Pimentel E.C.G., Thaller G., Tetens J. DNA-based identification of novel bovine casein gene variants. Journal of Dairy Science,2013, 96(1): 699-709 CrossRef
  36. Massella E., Piva S., Giacometti F., Liuzzo G., Zambrini A.V., Serraino A. Evaluation of bovine beta casein polymorphism in two dairy farms located in northern Italy. Italian Journal of Food Safety, 2017, 6(3): 131-133 CrossRef
  37. Sodhi M., Kataria R.S., Niranjan S.K., Parvesh K., Verma P., Swami S.K., Sharma A., Bharti V.K., Kumar B., Iqbal M., Rabgais S., Kumar P., Giri A., Kalia S., Gagoi D., Sarangi P.P., Mukesh M. Sequence characterisation and genotyping of allelic variants of beta casein gene establishes native cattle of Ladakh to be a natural resource for A2 milk. Life Science Journal, 2018, 3(2): 177-181.
  38. Il’ina A.V., Abramova M.V., Zyryanova S.V. Vestnik Buryatskoy gosudarstvennoy sel’skokhozyaystvennoy akademii im. V.R. Filippova, 2018, 4(53): 55-62 (in Russ.).
  39. Ganguly I., Kumar S., Gaur G., Singh U., Kumar A., Kumar S., Mann S., Sharma A. Status of β-casein, CSN2, polymorphism in frieswal, HF X Sahiwal cross bred cattle. Int. J. Biotechnol. Bioeng. Res., 2013, 4: 249-256.
  40. Valitov F.R. Materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii v ramkakh XXVI Mezhdunarodnoy spetsializirovannoy vystavki «Agrokom-pleks-2016» [Proc. Int. Conf. within the framework of the XXVI International specialized exhibition Agrokom-plex-2016]. Ufa, 2016, chast’ II: 2730 (in Russ.).
  41. Amalfitano N., Macedo Mota L.F., Rosa G.J.M., Cecchinato A., Bittante G. Role of CSN2, CSN3, and BLG genes and the polygenic background in the cattle milk protein profile. Journal of Dairy Science, 2022, 105(7): 6001-6020 CrossRef
  42. Marzanov N.S., Abylkasymov D.A., Devrishov D.A., Marzanova S.N., Libet I.S. Aktual’nye voprosy molochnoy promyshlennosti, mezhotraslevye tekhnologii i sistemy upravleniya kachestvom, 2020, 1, 1(1): 368-376 (in Russ.).
  43. Kostyunina O.V., Konovalova E.N., Dolmatova I.Yu., Rakina Yu.A., Gladyr’ E.A. Dostizheniya nauki i tekhniki APK, 2013, 3: 64-67 (in Russ.).
  44. Pandey A., Thakur M.S., Pandey Y. Association study of polymorphic varients of beta (b) casein gene with milk production traits (lactose, snf and density) in Malvi, Nimari, Sahiwal and H.F. cross breeds cow. Indian Journal of Animal Research, 2021, 55(1): 1-5 CrossRef
  45. Paramonova M.A., Valitov F.R., Kononenko T.V. Materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii, posvyashchennoy 120-letiyu so dnya rozhdeniya professora O.A. Ivanovoy «Dostizheniya i aktual’nye problemy genetiki, biotekhnologii i selektsii zhivotnykh» [Proc. Int. Conf. «Achievements and current problems of genetics, biotechnology and animal breeding»]. Vitebsk, 2021: 38-42 (in Russ.).
  46. Pal S., Woodford K., Kukuljan S., Ho S. Milk intolerance, beta-casein and lactose. Nutrients, 2015, 7(9): 7285-7297 CrossRef
  47. ul Haq M.R., Kapila R., Shandilya U.K., Kapila S. Impact of milk derived β-casomorphins on physiological functions and trends in research: a review. International Journal of Food Properties, 2014, 17(8): 1726-1741 CrossRef
  48. Khalid R.B., Nadeem A., Javed M., Shabbir M.Z., Babar M.E. Characterization of β-casein gene sequence variants in cholistani cattle. Pakistan Journal of Zoology, 2021, 53(5): 1929-1937 CrossRef
  49. Poulsen N.A., Glantz M., Rosengaard A.K., Paulsson M., Larsen L.B. Comparison of milk protein composition and rennet coagulation properties in native Swedish dairy cow breeds and high-yielding Swedish Red cows. Journal of Dairy Science, 2017, 100(11): 8722-8734 CrossRef
  50. Li X., Spencer G.W.K., Ong L., Gras S.L. Beta casein proteins — a comparison between caprine and bovine milk. Trends in Food Science and Technology, 2022, 121: 30-43 CrossRef
  51. Geeta Chauhan L.G., Kumar K. a-Glucosidase and a-amylase inhibitory properties of A1 and A2 cow milk casein hydrolysate. International Journal of Current Microbiology and Applied Sciences, 2021, 10(2): 2210-2217 CrossRef
  52. Kumar A., Kumar S., Singh R.V., Chauhan A., Kumar A., Sonwane A., Ilayakumar K., Singh R. Investigation of genetic polymorphism at β-casein A1/A2 loci and association analysis with production & reproduction traits in Vrindavani crossbred cows. Animal Biotechnology, 2021: 33(7): 1562-1570 CrossRef
  53. Malarmathi M., Senthil K. T., Parthiban M., Muthuramalingam T., Palanisammi A. Analysis of b-casein gene for A1 and A2 genotype using allele specifi c PCR in Kangeyam and Holstein Friesian crossbred cattle in Tamil Nadu. Indian Journal of Veterinary and Animal Sciences and Research, 2014, 43: 310-315.
  54. Hockey M., Aslam H., Berk M., Pasco J.A., Ruusunen A., Mohebbi M., Macpherson H., Chatterton M.L., Marx W., O’Neil A., Rocks T., McGuinness A.J., Young L.M., Jacka F.N. The Moo’D Study: protocol for a randomised controlled trial of A2 beta-casein only versus conventional dairy products in women with low mood. Trials, 2021, 22(1): 899 CrossRef
  55. Mumtaz S. β Casein polymorphism in indigenous and exotic cattle breeds of Pakistan. Pakistan Journal of Zoology, 2022, 54(3): 1451-1454 CrossRef
  56. Gorlov I.F., Sycheva O.V., Kononova L.V. Molochnoe i myasnoe skotovodstvo, 2016, 6: 18-19 (in Russ.).
  57. Marzanov N.S. Abylkasymov D.A., Libet I.S., Devrishov D.A. V sbornike: Aktual’nye voprosy molochnoy promyshlennosti, mezhotraslevye tekhnologii i sistemy upravleniya kachestvom [In: Current issues in the dairy industry, cross-industry technologies and quality management systems]. Moscow, 2020: 368-376 CrossRef (in Russ.).
  58. Khavkin A.I., Vasia M.N., Novikova V.P. Еksperimental’naya i klinicheskaya gastroеnterologiya, 2021, 196(12): 102-109. CrossRef (in Russ.).
  59. Khavkin A.I., Vasia M.N., Novikova V.P. Еksperimental’naya i klinicheskaya gastroеnterologiya, 2021, 12: 110-118 CrossRef (in Russ.).
  60. Huppertz T., Fox P.F., Kelly A.L. The caseins: structure, stability, and functionality. In: Proteins in food processing: Second Edition. Woodhead Publishing, 2018: 49-92 CrossRef
  61. Sharma V., Sharma N., Jawed B. Nautiyal S., Singh R. High resolution melts curve analysis for the detection of A1, A2 β-casein variants in Indian cows. Journal of Microbiology and Biotechnology Research, 2013, 3: 144-148.
  62. De Gaudry D.K., Lohner S., Schmucker C., Kapp P., Motschall E., Horrlein S., Roger C., Meerpohl J.J. Milk A1 p-casein and health-related outcomes in humans: a systematic review. Nutrition Reviews, 2019, 77(5): 278-306 CrossRef
  63. Daniloski D., McCarthy N.A., Markoska T., Auldist M.J., Vasiljevic T. Conformational and physicochemical characteristics of bovine skim milk obtained from cows with different genetic variants of β-casein. Food Hydrocolloids, 2022, 124(Part A): 107186 CrossRef
  64. Yudin N.S., Voevoda M.I. Molecular genetic markers of economically important traits in dairy cattle, Russ. Genetika, 2015, 51(5): 506-517 CrossRef
  65. Duarte-Vázquez M.Á., García-Ugalde C., Villegas-Gutiérrez L.M., García-Almendárez B.E., Rosado J.L. Production of cow's milk free from beta-casein A1 and its application in the manufacturing of specialized foods for early infant nutrition. Foods, 2017, 6(7): 50 CrossRef
  66. Bodnár Á., Hajzser A., Egerszegi I., Póti P., Kuchtík J., Pajor F. A2 milk and its importance in dairy production and global market. Animal Welfare, Ethology and Housing Systems, 2018, 14(1): 1-7 CrossRef
  67. Ho S., Woodford K., Kukuljan S., Pal S. Comparative effects of A1 versus A2 beta-casein on gastrointestinal measures: a blinded randomised cross-over pilot study. European Journal of Clinical Nutrition, 2014, 68(9): 994-1000 CrossRef
  68. Auestad N., Layman D.K. Dairy bioactive proteins and peptides: a narrative review. Nutrition Reviews, 2021, 79(supp_2): 36-47 CrossRef
  69. Aune D., Norat T., Romundstad P., Vatten L.J. Dairy products and the risk of type 2 diabetes: A systematic review and dose-response meta-analysis of cohort studies. American Journal of Clinical Nutrition, 2013, 98(4): 1066-1083 CrossRef
  70. Hu D., Huang J., Wang Y., Zhang D., Qu Y. Dairy foods and risk of stroke: A meta-analysis of prospective cohort studies. Nutrition, Metabolism and Cardiovascular Diseases, 2014, 24(5): 460-469 CrossRef
  71. Kuellenberg de Gaudry D., Lohner S., Bischoff K., Schmucker C., Hoerrlein S., Roeger C., Schwingshackl L., Meerpohl J.J. A1- and A2 beta-casein on health-related outcomes: a scoping review of animal studies. European Journal of Nutrition,2022, 61: 1-21 CrossRef
  72. Patterson E., Larsson S.C., Wolk A., Åkesson A. Association between dairy food consumption and risk of myocardial infarction in women differs by type of dairy food. Journal of Nutrition, 2013, 143(1): 74-79 CrossRef
  73. Aune D., Navarro Rosenblatt D.A., Chan D.S.M., Vieira A.R., Vieira R., Greenwood D.C., Vatten L.J., Norat T. Dairy products, calcium, and prostate cancer risk: A systematic review and meta-analysis of cohort studies. The American Journal of Clinical Nutrition, 2015, 101(1): 87-117 CrossRef
  74. Cies̈lińska A., Sienkiewicz-Szłapka E., Wasilewska J., Fiedorowicz E., Chwała B., Moszyńska-Dumara M., Cies̈liński T., Bukało M., Kostyra E. Influence of candidate polymorphisms on the dipeptidyl peptidase IV and μ-opioid receptor genes expression in aspect of the β-casomorphin-7 modulation functions in autism. Peptides, 2015, 65: 6-11 CrossRef
  75. Ramakrishnan M., Eaton T., Sermet O., Savaiano D. A single meal of milk containing A2 b-casein causes fewer symptoms and lower gas production than milk containing both A1 and A2 b-casein among lactose intolerant individuals. Current Developments in Nutrition, 2020, 4(suppl 2): 772 CrossRef
  76. He M., Sun J., Jiang Z.Q., Yang Y.X. Effects of cow's milk beta-casein variants on symptoms of milk intolerance in Chinese adults: a multicentre, randomised controlled study. Nutrition Journal, 2017, 16(1): 72 CrossRef
  77. Trivedi M.S., Shah J.S., Al-Mughairy S., Malav S., Hodgson N.W., Simms B., Trooskens G.A., Criekinge W.V., Deth R.C. Food-derived opioid peptides inhibit cysteine uptake with redox and epigenetic consequences. The Journal of Nutritional Biochemistry, 2014, 25(10): 1011-1018 CrossRef
  78. Vivanco-Maroto S.M., Santos-Hernández M., Sanchón J., Picariello G., Recio I., Miralles B. In vitro digestion of milk proteins including intestinal brush border membrane peptidases. Transepithelial transport of resistant casein domains. Food Research International, 2022, 157: 111238 CrossRef
  79. Brooke-Taylor S., Dwyer K., Woodford K., Kost N. Systematic review of the gastrointestinal effects of A1 compared with A2 β-casein. Advances in Nutrition, 2017, 8(5): 739-748 CrossRef
  80. Jianqin S., Leiming X., Lu X., Yelland G.W., Ni J., Clarke A.J. Effects of milk containing only A2 beta casein versus milk containing both A1 and A2 beta-casein proteins on gastrointestinal physiology, symptoms of discomfort, and cognitive behavior of people with self-reported intolerance to traditional cows’ milk. Nutrition Journal, 2015, 15(1): 35 CrossRef
  81. Barnett M.P., McNabb W.C., Roy N.C., Woodford K.B., Clarke A.J. Dietary A1 β-casein affects gastrointestinal transit time, dipeptidyl peptidase-4 activity, and infl ammatory status relative to A2 β-casein in Wistar rats. International Journal of Food Sciences and Nutrition, 2014, 65(6): 720-727 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)