PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2023.4.773eng

UDC: 619:578

 

BIOLOGICAL PROPERTIES OF AFRICAN SWINE FEVER VIRUS ASFV/Kaliningrad 17/WB-13869

A.R. Shotin ✉, A.S. Igolkin, A. Mazloum, I.V. Shevchenko, E.V. Aronova, K.N. Gruzdev

Federal Center for Animal Health Control, VNIIZZh, mkr. Yurievets, Vladimir, 600901 Russia, e-mail shotin@arriah.ru ( corresponding author), igolkin_as@arriah.ru, mazlum@arriah.ru, shevchenko@arriah.ru., aronova@arriah.ru, gruzdev@arriah.ru

ORCID:
Shotin A.R. orcid.org/0000-0001-9884-1841
Shevchenko I.V. orcid.org/000-0001-6482-7814
Igolkin A.S. orcid.org/0000-0002-5438-8026
Aronova E.V. orcid.org/0000-0002-2072-6701
Mazloum A. orcid.org/0000-0002-5982-8393
Gruzdev K.N. orcid.org/0000-0003-3159-1969

Final revision received August 19, 2022
Accepted September 23, 2022

African swine fever (ASF) is a contagious viral disease of domestic pigs and wild boars of all ages and breeds. To date, the infection is endemic in many European and Asian countries including the Russian Federation. Previously ASF virus isolated and studied by Russian scientists were characterized as highly virulent, with 100 % mortality and assigned to genotype II. However, data on the detection of ASFV with reduced virulence and mortality were later reported, thus further analysis of modern isolates is of high importance. In this work, for the first time, we report the biological properties of the ASF virus (named ASFV/Kaliningrad 17/WB-13869) isolated on the territory of the Kaliningrad region of the Russian Federation. The bioassay was carried out on six large white breed pigs (Sus scrofa domesticus L.) weighing 15-20 kg, the experiment was performed in a BSL-3 animal facility at the Federal Center for Animal Health (FGBU ARRIAH). Pigs Nos. 3-6 were infected intramuscularly with ASFV/Kaliningrad 17/WB-13869 (genotype II serotype 8) that was isolated from the tubular bone of a wild boar carcass (Bagrationovskiy District, Kaliningrad Province) at a dose of 10 HAD/head. Two uninfected pigs (Nos. 1, 2) were kept in-contact with the infected ones. Clinical signs and body temperature of experimental animals were registered daily. The presence and severity of clinical signs and pathological changes were expressed quantitatively (the sum of scores for a number of indicators). Clinical score was based on assessment of body temperature, weight, behavior, appetite and water consumption, the state of the digestive and respiratory systems, skin and mucous membranes, the presence of nasal discharge and vomiting. Pathological anatomical autopsy assessed changes in the organs of the spleen, kidneys, liver, lung, submandibular and mesenteric lymph nodes. Points were assigned on a scale of severity of recorded signs from 1 to 3 (the most severe). Blood sampling (5.0 cm3 from each animal) was carried out until the death of pigs on the 0th, 3rd, 6th, 10th, 13th and 19th days after the start of the experiment. Samples taken from dead animals included; spleen, kidneys, liver, lung, submandibular and mesenteric lymph nodes. Samples and blood were used to prepare 10 % suspensions in sterile saline using an automatic homogenizer, then centrifuged at 400 g (Sigma Laborzentrifugen GmbH, Germany) for 2 min. The resulting supernatant was used for DNA extraction. Blood serum samples were tested for the presence of Anti-ASFV antibodies using ELISA test systems INgezim PPA Compac (Ingenasa, Spain) and ID Screen (IDvet, France), and immunoperoxidase method (IPM). Real-time PCR detected ASFV genome starting from the 3rd day after infection, while IPM detected anti-ASFV antibodies 1-2 days before the death of infected animals, no anti-ASFV antibodies were detected in the serum of animals by ELISA test systems throughout the experiment. Maximum clinical score was registered in animals with a sub-acute form of the disease (21 and 35 points, respectively), while minimum with hyper-acute disease form (6 and 8 points). As a result, ASFV/Kaliningrad 17/WB-13869 virus isolate was characterized as highly virulent, capable of causing ASF in pigs in forms from hyperacute to subacute with mortality up to 100 % of infected and contact animals, which is similar to the clinical picture caused by ASF virus isolates from the Russian Federation in 2007-2018.

Keywords: African swine fever, wild boars, bioassay, laboratory diagnostic methods, clinical signs, pathological changes.

 

REFERENCES

  1. Gabriel C., Blome S., Malogolovkin, A., Parilov S., Kolbasov D., Teifke J.P., Beer M. Characterization of African swine fever virus Caucasus isolate in European wild boars. Emerging Infectious Diseases, 2011, 17(12): 2342-2345 CrossRef
  2. Guinat C., Reis A.L., Netherton C.L., Goatley L., Pfeiffer D.U., Dixon L. Dynamics of African swine fever virus shedding and excretion in domestic pigs infected by intramuscular inoculation and contact transmission. Veterinary Research, 2014, 45(1): 93 CrossRef
  3. Blome S., Gabriel C., Dietze K., Breithaupt A., Beer M. High virulence of African swine fever virus caucasus isolate in European wild boars of all ages. Emerging Infectious Diseases, 2012, 18(4): 708 CrossRef
  4. Events management. WAHIS. Available: https://wahis.woah.org/#/event-management. Accessed: 03/21/2022.
  5. Dixon L.K., Chapman D.A.G., Netherton C.L., Upton C. African swine fever virus replication and genomics. VirusResearch, 2013, 173(1): 3-14 CrossRef
  6. Mazlum A., Igolkin A.S., Vlasova N.N., Romenskaya D.V. Veterinariya segodnya, 2019, 3: 3-14 CrossRef (in Russ.).
  7. Gruzdev K.N., Karaulov A.K., Igolkin A.S. Veterinariya segodnya, 2020, 1: 38-43 CrossRef (in Russ.).
  8. Alonso C., Borca M., Dixon L., Revilla Y., Rodriguez F., Escribano J.M. ICTV Virus Taxonomy Profile: Asfarviridae. The Journal of General Virology, 2018, 99(5): 613-614 CrossRef
  9. Remyga S.G., Pershin A.S., Shevchenko I.V., Igolkin A.S., Shevtsov A.A. Veterinariya segodnya, 2016, 3(18): 46-51 (in Russ.).
  10. Vlasov M.E., Sibgatullova A.K., Balyshev V.M. Veterinariya, 2019, 4: 15-19 CrossRef (in Russ.).
  11. Bolgova M.V., Morgunov Yu.P., Vasil’ev A.P., Balyshev V.M. Aktual’nye voprosy veterinarnoy biologii, 2013, 4(20): 26-30 (in Russ.).
  12. Balyshev V.M, Kurinnov V.V., Tsybanov S.Zh., Kalantaenko Yu.F., Kolbasov D.V., Pronin V.V., Korneva G.V. Veterinariya, 2010, 7: 25-27 (in Russ.).
  13. Pershin A., Shevchenko I., Igolkin A., Zhukov I., Mazloum A., Aronova E., Vlasova N., Shevtsov A. A long-term study of the biological properties of ASF virus isolates originating from various regions of the Russian Federation in 2013-2018. Vet. Sci., 2019, 6(4): 99 CrossRef
  14. Varentsova A.A., Remyga S.G., Gavrilova V.L., Zhukov I.Yu., Puzankova O.S., Vlasova N.N., Shevtsov A.A., Gruzdev K.N. Veterinariya, 2013, 12: 27-32 (in Russ.).
  15. Chernykh Yu.A., Krivonos R.A., Verkhovskiy O.A., Aliper T.I., Pershin A.S., Zhukov I.Yu., Vlasova N.N., Igolkin A.S. Veterinarnyy vrach, 2019, 2: 15-22 CrossRef (in Russ.).
  16. Zhao D., Liu R., Zhang X., Li F., Wang J., Zhang J., Liu X., Wang L., Zhang J., Wu X., Guan Y., Chen W., Wang X., He X., Bu Z. Replication and virulence in pigs of the first African swine fever virus isolated in China. Emerging Microbes & Infections, 2019, 8(1): 438-447 CrossRef
  17. Gallardo C., Soler A., Nurmoja I., Cano-Gómez C., Cvetkova S., Frant M., Woźniakowski G., Simón A., Pérez C., Nieto R., Arias M. Dynamics of African swine fever virus (ASFV) infection in domestic pigs infected with virulent, moderate virulent and attenuated genotype II ASFV European isolates. Transboundary and Emerging Diseases, 2021, 68(5): 2826-2841 CrossRef
  18. Zani L., Forth J. H., Forth L., Nurmoja I., Leidenberger S., Henke J., Carlson J., Breidenstein C., Viltrop A., Höper D., Sauter-Louis C., Beer M., Blome S. Deletion at the 5'-end of Estonian ASFV strains associated with an attenuated phenotype. Scientific Reports, 2018, 8(1): 6510 CrossRef
  19. Sun E., Zhang Z., Wang Z., He X., Zxang X., Wang L., Huang L., Xi F., Huangfu H., Tsegay G., Huo H., Sun J., Tian Z., Xia W., Yu X., Li F., Liu R., Guan Y., Zhao D., Bu Z. Emergence and prevalence of naturally occurring lower virulent African swine fever viruses in domestic pigs in China in 2020. Sci. China Life Sci., 2021, 64, 752-765 CrossRef
  20. Gallardo C., Soler A., Nieto R., Sánchez M.A., Martins C., Pelayo V., Carrascosa A., Revilla Y., Simón A., Briones V., Sánchez-Vizcaíno J. M., Arias M. Experimental transmission of African swine fever (ASF) low virulent isolate NH/P68 by surviving pigs. Transboundary and Emerging Diseases, 2015, 62(6): 612-622 CrossRef
  21. Gallardo C., Soler A., Nieto R., Cano C., Pelayo V., Sánchez M.A., Pridotkas G., Fernandez-Pinero J., Briones V., Arias M. Experimental infection of domestic pigs with African swine fever virus Lithuania 2014 genotype II field isolate. Transboundary and Emerging Diseases, 2017 64(1): 300-304 CrossRef
  22. Shotin A.R., Igolkin A.S., Mazlum A., Shevchenko I.V., Bardina N.S., Morozova E.O., Shevtsov A.A. Veterinariya segodnya, 2022, 11(4): 347-358 CrossRef (in Russ.).
  23. Gallardo C., Soler A., Rodze I., Nieto R., Cano-Gómez C., Fernandez-Pinero J., Arias M. Attenuated and non-haemadsorbing (non-HAD) genotype II African swine fever virus (ASFV) isolated in Europe, Latvia 2017. Transboundary and Emerging Diseases, 2019, 66(3): 1399-1404 CrossRef
  24. Sun E., Huang L., Zhang X., Zhang J., Shen D., Zhang Z., Wang Z., Huo H., Wang W., Huangfu H., Wang W., Li F., Liu R., Sun J., Tian Z., Xia W., Guan Y., He X., Zhu Y., Zxao D., Bu Z. Genotype I African swine fever viruses emerged in domestic pigs in China and caused chronic infection. Emerging Microbes & Infections, 2021, 10(1): 2183-2193 CrossRef
  25. Nurmoja I, Petrov A., Breidenstein C., Zani L., Forth J.H., Beer M., Kristian M., Viltrop A., Blome S. Biological characterization of African swine fever virus genotype II strains from north-eastern Estonia in European wild boar. Transboundary and Emerging Diseases, 2017, 64(6): 2034-2041 CrossRef
  26. Strizhakova O.M., Lyska V.M., Malogolovkin A.S., Novikova M.B., Sidlik M.V., Nogina I.V., Shkaev A.Е., Balashova E.A., Kurinnov V.V., Vasil’ev A.P. Validation of an ELISA kit for detection of antibodies against asf virus in blood or spleen of domestic pigs and wild boars. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2016, 51(6): 845-852 CrossRef
  27. Shevchenko I.V., Zhukov I.Yu., Pershin A.S., Remyga S.G., Shevtsov A.A., Igolkin A.S. Metodicheskie rekomendatsii po postanovke bioproby s zarazheniem sviney virusom afrikanskoy chumy sviney [Challenging pigs with African swine fever virus — a bioassay methodology]. Vladimir, 2017 (in Russ.).
  28. Metodicheskie ukazaniya po otsenke klinicheskikh priznakov i patologoanatomicheskikh izmeneniy pri еksperimental’nom zarazhenii virusom afrikanskoy chumy sviney [Guidelines for assessing clinical signs and pathological changes during experimental infection with African swine fever virus]. Vladimir, 2017 (in Russ.).
  29. Kurinnov V., Belyanin S., Vasiliev A., Strizhackova O., Lyska V., Nogina I., Balyshev V., Tsybanov S., Mironova L., Chernuikh O., Kolbasov D. Detection of specific antibodies in the organs of dead domestic pigs and wild boars after an experimental acute ASF infection and at the infection outbreaks in Russia in 2008 to 2011. EPIZONE 6th Annual Meeting «Viruses on the move». Brighton, 2012: 51.
  30. Pershin A.S., Komova T.N., Shotin A.R., Zhukov I.Yu., Vlasova N.N., Shevchenko I.V., Igolkin A.S. Metodicheskie rekomendatsii po vyyavleniyu antitel k virusu afrikanskoy chumy sviney immunoperoksidaznym metodom [Guidelines for detecting antibodies to African swine fever virus using the immunoperoxidase method]. Vladimir, 2020 (in Russ.).
  31. Chernyshev R.S., Mazlum A., Kolbin I.S., Igolkin A.S. Metodicheskie rekomendatsii po opredeleniyu chisla kopiy genoma virusa afrikanskoy chumy sviney v biologicheskom materiale metodom polimeraznoy tsepnoy reaktsii v rezhime real’nogo vremeni (PTsR-RV) [Recommendations for determining the number of the African swine fever virus genome copies in biomaterial using real-time polymerase chain reaction (RT-PCR)]. Vladimir, 2022 (in Russ.).
  32. Vlasov M.E. Nauchnyy zhurnal KubGAU, 2017, 134(10): 1-11 CrossRef (in Russ.).
  33. Balyshev V.M., Vlasov M.E., Imatdinov A.R., Titov I.A., Morgunov S.Yu., Malogolovkin A.S. Rossiyskaya sel’skokhozyaystvennaya nauka, 2018, 4: 54-57 CrossRef (in Russ.).
  34. Vlasova N.N., Varentsova A.A., Shevchenko I.V., Zhukov I.Y., Remyga S.G., Gavrilova V.L., Puzankova O.S., Shevtsov A.A., Zinyakov N.G., Gruzdev K.N. Comparative analysis of clinical and biological characteristics of African swine fever virus isolates from 2013 year Russian Federation. British Microbiology Research Journal, 2015, 5(3): 203-215 CrossRef
  35. Gallardo C., Fernández-Pinero J., Arias M. African swine fever (ASF) diagnosis, an essential tool in the epidemiological investigation. Virus Research, 2019, 271: 197676 CrossRef
  36. Gallardo M.C., de la Torre Reoyo A., Fernández-Pinero J., Iglesias I., Muñoz M.J., Arias M.L. African swine fever: a global view of the current challenge. Porcine Health Management, 2015, 1: 21 CrossRef
  37. Mur L., Igolkin A., Varentsova A., Pershin A., Remyga S., Shevchenko I., Zhukov I., Sánchez-Vizcaíno J.M. Detection of African swine fever antibodies in experimental and field samples from the Russian Federation: implications for control. Transboundary and Emerging Diseases, 2016, 63(5): e436-e440 CrossRef
  38. Global African Swine Fever Research Alliance (GARA) Gap Analysis Report. 2018. Available: https://go.usa.gov/xPfWr. Accessed: 07/18/2021.

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)