PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2023.4.622eng

UDC: 636.2.033:575.174

Acknowledgements:
The research was carried out within the framework of the state assignment of the Ministry of Science and Higher Education of the Russian Federation No. 121052600344-8.

 

DNA ANALYSIS OF MYOSTATIN, LEPTIN AND CALPAIN 1 GENE POLYMORPHISM IN RUSSIAN CATTLE POPULATION OF ABERDEEN ANGUS BREED

E.N. Konovalova1 ✉ , M.I. Selionova2, E.A. Gladyr1,
O.S. Romanenkova1, L.V. Evstafeva2

1Ernst Federal Science Center for Animal Husbandry, 60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail konoval-elena@yandex.ru (✉ corresponding author);
2Russian State Agrarian University — Timiryazev Moscow Agricultural Academy, 49, ul. Timiryazevskaya, Moscow, 127434 Russia, e-mail: m_selin@mail.ru

ORCID:
Konovalova E.N. orcid.org/0000-0002-2170-5259
Romanenkova O.S. orcid.org/0000-0002-2682-6164
Selionova M.I. orcid.org/0000-0002-9501-8080
Evstafeva L.V. orcid.org/0009-0001-5045-1235
Gladyr E.A. orcid.org/0000-0002-5210-8932

Final revision received December 20, 2022
Accepted January 30, 2023

Beef meat is characterized by high nutritional value and unique amino acid composition (V.S. Kolodyaznaya et al., 2011; D. Pighin et al., 2016). Specialized beef cattle breeds in particular Aberdeen Angus ensures good acclimatization ability and high productivity both in Russia and broad (R. Toušová et al., 2015; V.M. Gabidulin et al., 2018; A.I. Otarov et al., 2021). Modern strategies of increasing efficiency of meat cattle farming include animal genotyping for genetic determinants of high productivity and targeted selection (V.F. Fedorenko et al., 2018; S.A. Terry et al., 2020). This paper is the first to report the development of a PCR-RFLP-based test for detection of Arg4Cys LEP and CAPN1_316 allele polymorphisms. This test was used for genotyping of the Aberdeen-Angus cattle population. The frequencies of the different polymorphism genotypes are evaluated and the influence of the LEP and CAPN1 polymorphisms on animal fattening qualities. The purpose of the study was to develop the test systems for revealing the leptin LEP gene c.466 CT polymorphism and calpain 1 CAPN1 gene polymorphism rs17872000, to genotype Aberdeen Angus cattle population for these genes and the myostatin MSTN gene, and to investigate the links between different allele variants and fattening qualities of animals. Bulls (n = 64) and heifers (n = 81) of the population of Aberdeen-Angus young cattle (Bos taurus) (OOO Happy Farm, Medynsky District, Kaluga Province) born from March 2020 until May 2021 were selected for the study. Weaning of calves from mothers was carried out at the age of 6-9 months, depending on the development of a particular calf. The live weight was determined at the age of 6, 8, 12 and 15 months. Blood samples were collected for genotyping. DNA was isolated using DNA-Extran 1 kit (ZAO Syntol, Russia). The test for genotyping was developed based on the polymerase chain reaction—restriction fragment length polymorphism (PCR-PDRF) method. PCR amplification was carried out on a Bio-Rad T100 thermal cycler (Bio-Rad Laboratories Singapore) followed by RFLP analysis of amplification products to differentiate the SNP alleles. Specific   endonucleases with restriction sites in mutant alleles were found using the NEBcutter v2.0 program  (https://nc2.neb.com/NEBcutter2/). PCR-RFLP products were analyzed using 2 % agarose gel electrophoresis. The test system for the F94L MSTN polymorphism has been developed earlier (E.N. Konovalova et al., 2021). To verify the CAPN1_316 amplification, Sanger sequencing was performed for three genotypes. In developing the diagnostic test for of Arg4Cys LEP и CAPN1_316 polymorphisms, we used the sequences of NM_174259 and AJ512638.1 (NCBI, https://www.ncbi.nlm.nih.gov/). The polymorphism F94L MSTN CC genotype occurred in 98.77 % of investigated animals. For Arg4Cys LEP polymorphism, CT genotype prevailed with a frequency of 42.19 % for bulls and 45.68 % for heifers.  For CAPN1_316 polymorphism, the GG genotype predominated and accounted for 51.56 % of bulls and 69.14 % of heifers. The frequencies of the desirable productivity alleles among bulls and heifers were 0.00 and 0.01, respectively, for АF94L MSTN, 0.49 and 0.51 for СArg4Cys LEP, and 0.20 and 0.28 for C CAPN1_316. The bulls with Arg4Cys LEP TT genotype demonstrated the highest efficiency of live weight gain from birth to 8 months, the 778 g per day which is significantly higher (t = 2.18) compared to CC (748 g). For CAPN1_316 polymorphism, in heifers from birth to 8 months, there was a trend to higher daily weight gain in animals of CC genotype, 770 g vs. 720 g for GC genotype and 730 g for GG genotypes. However, in the post-weaning period, the observed trends changed. The 12-month-old bulls with the Arg4Cys LEP CC genotype had a significantly higher live weight compared to CT bulls, The CAPN1_316 GG heifers of 8 to 15 months of aged showed a significantly higher live weight gain compared to CAPN1_316 CC, 790 g vs. 740 g. The developed test systems ensures detection of the Arg4Cys LEP and CAPN1_316 polymorphisms and can be used for genotyping and selecting beef cattle of desirable genotypes.  

Keywords: cattle, Aberdeen Angus breed, productivity markers, SNP, myostatin, leptin, calpain 1.

 

REFERENCES

  1. Kolodyaznaya V.S., Baranenko D.A, Broyko Yu.V. Protsessy i apparaty pishchevykh proizvodstv, 2011, 1: 232-237 (in Russ.).
  2. Pighin D., Pazos A., Chamorro V., Paschetta F., Cunzolo S., Godoy F., Messina V., Pordomingo A., Grigioni G. A contribution of beef to human health: a review of the role of the animal production systems. The Scientific World Journal, 2016, 2016: 8681491 CrossRef
  3. Terry S.A., Basarab J.A., Guan L.L., McAllister T.A. Strategies to improve the efficiency of beef cattle production. Canadian Journal of Animal Science, 2020, 101(1): 1-19 CrossRef
  4. Fedorenko V.F., Mishurov N.P., Kuz’mina T.N., Tikhomirov A.I., Gus’kova S.V., Svinarev I.Yu., Bekenev V.A., Kolosov Yu.A., Frolova V.I., Bol’shakovaI.V. Peredovye praktiki v otechestvennom plemennom zhivotnovodstve: nauchnyy analiticheskiy obzor [Best practices in domestic livestock breeding: analytical review]. Moscow, 2018 (in Russ.).
  5. Dunin I.M., Tyapugin S.E., Meshcherov R.K., Khodykov V.P., Adzhibekov V.K., Tyapugin E.E., Dyul’dina A.V. Molochnoe i myasnoe skotovodstvo, 2020, 2: 2-7 CrossRef (in Russ.).
  6. Toušová R., Ducháček J., Stádník L., Ptáček M., Beran J. The selected factors influenced growth ability to weaning of Aberdeen Angus cattle. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 2015, 63(2): 457-461 CrossRef
  7. Otarov A.I., Kayumov F.G., Tret’yakova R.F. Zhivotnovodstvo i kormoproizvodstvo, 2021, 104(2): 56-64 CrossRef (in Russ.).
  8. Gabidulin V.M., Alimova S.A. Vestnik myasnogo skotovodstva, 2017, 4(100): 18-24 (in Russ.).
  9. Dunin I.M., Butusov D.V., Shichkin G.I., Safina G.F., Chernov V.V., Lastochkina O.V., Tyapugin S.E., Bogolyubova L.P., Nikitina S.V., Matveeva E.A., Tyapugin E.E. V sbornike: Ezhegodnik po plemennoy rabote v myasnom skotovodstve v khozyaystvakh Rossiyskoy Federatsii (2019 god) [In: Yearbook on beef cattle breeding work in the Russian Federation (2019)]. Lesnye Polyany, 2020: 3-16 (in Russ.).
  10. Chen M.-M., Zhao Y.-P., Zhao Y., Deng S.-L., Yu K. Regulation of myostatin on the growth and development of skeletal muscle. Frontiers in Cell and Developmental Biology, 2021, 9: 785712 CrossRef
  11. Grobet L., Martin L.J.R., Poncelet D., Pirottin D., Brouwers B., Riquet J., Schoeberlein A., Dunner S., Ménissier F., Massabanda J., Fries R., Hanset R., Georges M. A deletion in the bovine myostatin gene causes the double—muscled phenotype in cattle. Nature Genetics, 1997, 17(1): 71-74 CrossRef
  12. Dunner S., Miranda M.E., Amigues Y., Canon J., Georges M., Hanset R., Williams J., Menissier F. Haplotype diversity of the myostatin gene among beef cattle breeds. Genetics, Selection, Evolution,2003,35: 103-118 CrossRef
  13. Sellick G.S., Pitchford W.S., Morris C.A., Cullen N.G., Crawford A.M., Raadsma H.W., Bottema C.D.K. Effect of myostatin F94L on carcass yield in cattle: MSTN effects on beef yield. Animal Genetics, 2007, 38(5): 440-446 CrossRef
  14. Esmailizadeh A.K., Bottema C.D.K, Sellick G.S., Verbyla A.P., Morris C.A., Cullen N.G., Pitchford W.S. Effects of the myostatin F94L substitution on beef traits. Journal of Animal Science, 2008, 86(5): 1038-1046 CrossRef
  15. Lee J., Kim J.-M., Garrick D.J. Increasing the accuracy of genomic prediction in pure-bred Limousin beef cattle by including cross-bred Limousin data and accounting for an F94L variant in MSTN. Animal Genetics, 2019, 50(6): 621-633 CrossRef
  16. Konovalova E.N., Romanenkova O.S., Zimina A.A., Volkova V.V., Sermyagin A.A. Genetic variations and haplotypic diversity in the myostatin gene of different cattle breeds in Russia. Animals,2021, 11(10): 2810 CrossRef
  17. Eduardo Casas E., Kehrli Jr.M.E. A review of selected genes with known effects on performance and health of cattle. Frontiers Veterinary Science, 2016, 3: 113 CrossRef
  18. Komisarek J., Szyda J., Michalak A., Dorynek Z. Impact of leptin gene polymorphisms on breeding value for milk production traits in cattle. Journal of Animal and Feed Sciences, 2005, 14(3): 491-500 CrossRef
  19. Gerasimov N.P., Kolpakov V.I., Kosyan D.B., Syromyatnikov M.Yu., Kvan O.V., Rusakova E.A. Zhivotnovodstvo i kormoproizvodstvo, 2020, 103(3): 114-126 CrossRef (in Russ.).
  20. Liefers S., Pas M.T., Veerkamp R., Chilliard Y., Delavaud C., Gerritsen R., van der Lende T. Association of leptin gene polymorphisms with serum leptin concentration in dairy cows. Mammalian Genome, 2003, 14: 657-663 CrossRef
  21. Kovalyuk N.V., Machulskaya E.V., Satsuk V.F., Shakhnazarova Yu.Yu. Influence of polymorphism of R25C and Y7F loci of the leptin gene on the duration of economic use of the Ayrshire cattle. Russian Agricultural Sciences, 2017, 43(6): 494-496 CrossRef
  22. Mota L.F.M., Bonafé C.M., Alexandre P.A., Santana M.H., Novais F.J, Toriyama E., Pires A.V., Silva S.L., Leme P.R., Ferraz J.B.S., Fukumasu H. Circulating leptin and its muscle gene expression in Nellore cattle with divergent feed efficiency. Journal of Animal Science and Biotechnology, 2017, 8: 71 CrossRef
  23. Buchanan F.C., Fitzsimmons C.J., Van Kessel A.G., Thue T.D., Winkelman-Sim D.C., Schmutz S.M. Association of a missense mutation in the bovine leptin gene with carcass fat content and leptin mRNA levels. Genetics, Selection, Evolution, 2002, 34: 105-116 CrossRef
  24. Hou G., Huang M., Gao X., Li J., Gao H., Ren H., Xu S. Association of calpain 1 (CAPN1) and HRSP12 allelic variants in beef cattle with carcass traits. African Journal of Biotechnology, 2011, 10(63): 13714-8 CrossRef
  25. Casas E., White S.N., Wheeler T.L., Shackelford S.D., Koohmaraie M., Riley D.G., Chase C.C. Jr., Johnson D.D., Smith T.P. Effects of calpastatin and micro-calpain markers in beef cattle on tenderness traits. Journal of Animal Science,2006, 84(3): 520-525 (doi: 10.2527/2006.843520x">CrossRef
  26. White S.N., Casas E., Wheeler T.L., Shackelford S.D., Koohmaraie M., Riley D.G., Chase C.C. Jr., Johnson D.D., Keele J.W., Smith T.P.L. A new single nucleotide polymorphism in CAPN1 extends the current tenderness marker test to include cattle of Bos indicus, Bos taurus,and crossbred descent. Journal of Animal Science,2005,83(9): 2001-2008 CrossRef
  27. Brooker R.J., Widmaier E.P., Graham L.E., Stiling P.D. Biology. Fourth edition. McGraw-Hill Education, 2017.
  28. Osnovy zhivotnovodstva /Pod redaktsiey A.I. Soldatova [Basics of animal husbandry. A.I. Soldatov (ed.)]. Moscow, 1988 (in Russ.).
  29. Leal-Gutiérrez J.D, Elzo M.A., Johnson D.D., Scheffler T.L., Scheffler J.M., Mateescu R.G. Association of μ-calpain and calpastatin polymorphisms with meat tenderness in a Brahman-Angus population. Frontiers in Genetics, 2018, 9: 56 CrossRef
  30. Rodriguez S., Gaunt T.R., Day I.N.M. Hardy-Weinberg Equilibrium Testing of Biological Ascertainment for Mendelian Randomization Studies. American Journal of Epidemiology, 2009,169(4): 505-514 CrossRef
  31. Glantz S.A. Primer of biostatistics. 4th ed.; Health Professions Division, McGraw-Hill, New York, 1997.
  32. Metodicheskoe rekomendatsii po poryadku i usloviyam provedeniya bonitirovki plemennogo krupnogo rogatogo skota myasnogo napravleniya produktivnosti /Pod redaktsiey I.M. Dudina Lesnye Polyany, 2020 [Methodological recommendations on the procedure and conditions for grading pedigree cattle for meat productivity. I.M. Dudin (ed.)]. Available: https://files.stroyinf.ru/Data2/1/4293721/4293721853.pdf. No date (in Russ.).
  33. Rebrikov D.V., Samatov G.A., Trofimov D.Yu., Semenov P.A., Savilova A.M., Kofiadi I.A., AbramovD.D. PTsR v real’nom vremeni: prakticheskoe rukovodstvo /Pod redaktsiey D.V. Rebrikova [Real-Time PCR: A practical guide. D.V. Rebrikov (ed.)]. Moscow, 2020 (in Russ.).
  34. Chacko E., Ranganathan S. Genome-wide analysis of alternative splicing in cow: implications in bovine as a model for human diseases. BMC Genomics, 2009, 10(3): S11 CrossRef
  35. Skachkova O.A., Vasil’ev A.A., Brigida A.V. Agrarnyy nauchnyy zhurnal, 2022, 2: 61-64 CrossRef (in Russ.).
  36. Gabidullin V.M., Alimova S.A. Vestnik myasnogo skotovodstva, 2016, 4(96): 30-35 (in Russ.).
  37. Alipkina S.I., Nalobin D.S., Galiakberova A.A., Troshev D.V., Krasnov M.S., Boguslavskiy D.V., Glazko T.T., Glazko V.I., Kosovskiy G.Yu. Uspekhi sovremennoy biologii, 2019, 139(4): 352-364 CrossRef (in Russ.).
  38. Zhang J., Scarpace P.J. The soluble leptin receptor neutralizes leptin-mediated STAT3 signalling and anorexic responses in vivo. British Journal of Pharmacology, 2009, 158(2): 475-482 CrossRef
  39. Kratzsch J., Lammert A., Bottner A., Seidel B., Mueller G., Thiery J., Hebebrand J., Kiess W. Circulating soluble leptin receptor and free leptin index during childhood, puberty, and adolescence. The Journal of Clinical Endocrinology and Metabolism, 2002, 87(10): 4587-4594 CrossRef
  40. Zhang M., Bai X.J. Leptin and leptin receptor gene polymorphisms are correlated with production performance in the Arctic fox. Genetics and Molecular Research, 2015, 14(2): 5560-5570 CrossRef
  41. Mrode R., Ojango J.M.K., Okeyo A.M., Mwacharo J.M. Genomic selection and use of molecular tools in breeding programs for indigenous and crossbred cattle in developing countries: current status and future prospects (review article). Frontiers Genetics, 2019, 9: 694 CrossRef
  42. Moravčíková N., Kasarda R., Vostrý L., Krupová Z., Krupa E., Lehocká K., Olšanská B., Trakovická A., Nádaský R., Židek R., Belej L., Golian J. Analysis of selection signatures in the beef cattle genome. Czech Journal of Animal Science, 2019, 64(12): 491-503 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)