doi: 10.15389/agrobiology.2023.4.609eng

UDC: 636.5:591.13:636.084

Supported financially by the Russian Science Foundation, project No. 20-16-00078 П



A.P. Ivanishcheva ✉, E.A. Sizova, E.V. Yausheva

Federal Research Centre of Biological Systems and Agrotechnologies RAS, 29, ul. 9 Yanvarya, Orenburg, 460000, e-mail (✉ corresponding author),,

Ivanishcheva A.P.
Yausheva E.V.
Sizova E.A.

Final revision received May 15, 2023
Accepted July 6, 2023

In meat poultry farming, technologies of chick feeding and growing allow getting a carcass ready for sale for a short period (35-42 days). Such a high growth rate is due not only to proper feeds, but also to various feed additives (E.V. Yaskova et al., 2015). The ban of antibiotics-based growth stimulants in the European Union determines the search for alternative natural substances that provide similar effects. A promising group of such substances is prebiotics (D.S. Uchasov et al., 2014) which provide an increase in the efficiency of nutrient utilization, have a positive effect on the blood morphobiochemistry, poultry natural resistance, productivity, meat quality and economic efficiency (I.V. Chervonova, 2016). This mini review systematizes data on disaccharides as potential modulators of the intestinal microbiome profile and growth stimulants of broiler chickens when antibiotics are rejected. Several groups of substances with a prebiotic effect are widely used as ingredients of premixes and compound feeds. Currently, mono-, oligo-, di- and polysaccharides are being studied as promising prebiotics. The search for new biologically active substances with a multifactorial effect on broiler chickens is relevant. Feed additives used in poultry farming contain components with prebiotic properties. These components are oligo- and disaccharides (maltose, lactose, sucrose, lactulose, fructooligosaccharides, galactooligosaccharides, soy oligosaccharide), polysaccharides (cellulose, pectins, inulin, dextrin, etc.), monosaccharides (xylitol, raffinose), amino acids (arginine, valine, glutamic acid), antioxidants (vitamins A, E, C, carotenoids, selenium salts), organic acids (citric, acetic, propionic), plant and microbial extracts (carrot, corn, rice, garlic, potato, yeast), algae extracts. The prebiotic preparations based on organic acids (lactic, lemon, fumaric, formic) and lactulose are mostly used (E.V. Shatskikh et al., 2008). Natural prebiotics include fructans (fructooligosaccharides, short-chain fructooligosaccharides, oligofructose, inulin), mannooligosaccharides from Saccharomyces cerevisae, soy oligosaccharides and galacto- or transgalactooligosaccharides (D. Charalampopoulos et al., 2009). Lactulose, a synthetic structural isomer of lactose (4-O-b-D-galactopyranosyl-D-fructofuranose) consists of fructose and galactose linked by a b-1,4-glycoside bond. It is an odorless white crystalline substance highly soluble in water. Synthetic disaccharides are 1.5 times sweeter than lactose and can crystallize from an alcoholic solution. β-Glycoside bonds in disaccharides are not hydrolyzed by digestive enzymes (H. Rutloff et al., 1967). Therefore, disaccharides pass through the stomach and small intestine without degradation and, being unchanged, reach the large intestine (L.N. Skvortsova, 2010). In addition, lactulose has the highest index of prebiotic activity. It stimulates lacto- and bifidobacteria in the large intestine, promotes the restoration of normal microbial profile, declines pH in the colon, inhibits conditionally pathogenic microbes, improves the absorption of nutrients, and increases immunity (V.S. Buyarov et al., 2012; V.S. Buyarov et al., 2015). Commercial feed additives based on oligo- and disaccharides as a prebiotic component may contain various substances, including trehalose, lactulose, and inulin. All of them have restorative, immunostimulating, therapeutic and prophylactic properties, contribute to the restoration of intestinal microbial community, change the final microbial products, and prevent the occurrence of inflammation and infectious diseases (C. Schumann, 2002; K.M. Tuohy et al., 2002; J.H. Cho et al., 2014).

Keywords: broiler chickens, disaccharides, prebiotics, lactulose.



  1. Alexandratos N., Bruinsma J. World agriculture towards 2030/2050: the 2012 revision. ESA Working Paper No. 12-03. FAO, Rome, 2012.
  2. Egorov I.A., Imangulov Sh.A. Doklady Rossiyskoy akademii sel’skokhozyaystvennykh nauk, 2005, 5: 36-38 (in Russ.).
  3. Xin H., Liu K. Precision livestock farming in egg production. Animal Frontiers, 2017, 7(1): 24-31 CrossRef
  4. Yas’kova E.V., Sakhno O.N., Lytkina A.V., Gaponova A.V., Kazorina Yu.I. Biologiya v sel’skom khozyaystve, 2015, 2: 47-57 (in Russ.).
  5. Ardatskaya M.D. Meditsinskiy sovet, 2015, 13: 94-99 (in Russ.).
  6. Gibson G.R., Roberfroid M.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. The Journal of Nutrition, 1995, 125(6): 1401-1412 CrossRef
  7. Tayeri V., Seidavi A., Asadpour L., Phillips C.J.C. A comparison of the effects of antibiotics, probiotics, synbiotics and prebiotics on the performance and carcass characteristics of broilers. Veterinary Research Communications, 2018, 42: 195-207 CrossRef 
  8. Skvortsova L.N. Doklady Rossiyskoy akademii sel’skokhozyaystvennykh nauk, 2010, 3: 38-40 (in Russ.).
    1. Ezhova O., Sen’ko A., Gabzalilova Y§u. Kombikorma, 2009, 5: 67-68 (in Russ.).
  9. Zhao P.Y., Li H.L., Mohammadi M., Kim I.H. Effect of dietary lactulose supplementation on growth performance, nutrient digestibility, meat quality, relative organ weight, and excreta microflora in broilers. Poultry Science, 2015, 95(1): 84-89 CrossRef
  10. Skvortsova L.N. Еffektivnoe zhivotnovodstvo, 2009, 7(44): 30-31 (in Russ.).
  11. Sinnott M.L. Carbohydrate chemistry and biochemistry: structure and mechanism. The Royal Society of Chemistry, Cambridge, 2013.
  12. Ferrier D.R. Biochemistry. Lippincott Williams & Wilkins, Philadelphia, 2014.
  13. BeMiller J.N. Essentials of carbohydrate chemistry. In: Functionalizing carbohydrates for food applications: texturizing and bioactive/flavor delivery systems. M.E. Embuscado (ed.).DEStech Publications, Inc., Lancaster, 2014, 1-39.
  14. BeMiller J.N. Carbohydrate chemistry for food scientists. AACC International, St. Paul: 2007.
  15. NRC. Nutrient requirements of swine. 11th Revised Edition. Natl. Acad. Press, Washington, DC: 2012.
  16. Slavin J.L. Structure, nomenclature, and properties of carbohydrates. Biochemical, physiological, and molecular aspects of human nutrition. M.H. Stipanuk, M.A. Caudill (eds.). Elsevier, Inc., St. Louis, 2013: 50-68.
  17. Aider M., de Halleux D. Isomerization of lactose and lactulose production: review. Trends in Food Science & Technology, 2007, 18(7): 356-364 CrossRef
  18. Ruttloff H., Taufel A., Krause W., Haenel H., Taufel K. Enzymatic hydrolysis of galacto-oligosaccharides in the human and animal intestine with particular regard to L. bifidus. Behavior of lactulose in the intestine. Nahrung, 1967, 11: 39-46.
  19. Friend D. R. New oral delivery systems for treatment of inflammatory bowel disease. Advanced Drug Delivery Reviews, 2005, 57(2): 247–265. doi:10.1016/j.addr.2004.08.011
  20. Méndez A. Olano A. Lactulose: a review on some chemical properties and applications in infant nutrition and medicine. Dairy Sci. Abstr., 1979, 41: 531-535.
  21. Petuely F. Der Bifidusfactor. Deutsche Med. Wochenschr., 1957, 82: 1957-1960 CrossRef
  22. Panesar P.S., Kumari S. Lactulose: production, purification and potential applications. Biotechnology, 2011, 29(6): 940-948 CrossRef
  23. Brouns F. Saccharide characteristics and their potential health effects in perspective. Front. Nutr., 2020, 7: 1-13 CrossRef
  24. Englyst KN, Liu S, Englyst HN. Nutritional characterization and measurement of dietary carbohydrates. Eur. J. Clin. Nutr., 2007, 61(Suppl 1): S19-39 CrossRef
  25. Kitler M., Luginbuhl M., Lang O., Wuhl P., Wyss A., Lebek G. Lactitol and lactulose. Drug Invest., 1992, 4(1): 73-82.
  26. Khoroshevskaya L., Khoroshevskiy A., Larichev O., Maslovskiy K., Kozlova M. Materialy VI Mezhdunarodnogo veterinarnogo kongressa po ptitsevodstvu [Proc. of the VI International veterinary congress on poultry farming]. Moscow, 2010: 142-145 (in Russ.).
  27. Prasad S., Dhiman R.K., Duseja A., Chawla Y.K., Sharma A., Agarwal R. Lactulose improves cognitive functions and health-related quality of life in patients with cirrhosis who have minimal hepatic encephalopathy. Hepatology, 2007, 45(3): 549-559 CrossRef
  28. Schuster-Wolff-Bühringab R., Fischerac L., Hinrichs J. Production and physiological action of the disaccharide lactulose. International Dairy Journal, 2010, 20(11): 731-741 CrossRef
  29. Shatskikh E.V., Rogozinnikova I.V. Agrarnyy vestnik Urala, 2008, 11(53): 83-84 (in Russ.).
  30. Prebiotics and probiotics science and technology. D. Charalampopoulos, R. Rastall (eds.).  Springer Verlag, New York, 2009.
  31. Schumann C. Medical, nutritional and technological properties of lactulose. An update Eur. J. Nutr., 2002, 41(1): 17-25 CrossRef
  32. Tuohy K.M., Ziemer C.J., Klinder A., Knöbel Y., Pool-Zobel B.L., Gibson G.R. A human volunteer study to determine the prebiotic effects of lactulose powder on human colonic microbiota. Microbial Ecology in Health and Disease, 2002, 14: 165-173 CrossRef
  33. Cho J.H., Kim I.H. Effects of lactulose supplementation on performance, blood profiles, excreta microbial shedding of Lactobacillus and Escherichia coli, relative organ weight and excreta noxious gas contents in broilers. J. Anim. Physiol. Anim. Nutr., 2014, 98(3): 424-430 CrossRef
  34. Ruangpanit Y., Matsushita K., Mukai K., Kikusatod M. Effect of trehalose supplementation on growth performance and intestinal morphology in broiler chickens. Vet. Anim. Sci., 2020, 10: 100142 CrossRef<
  35. Rehman H., Rosenkranz C., Böhm J., Zentek J. Dietary inulin affects the morphology but not the sodium-dependent glucose and glutamine transport in the jejunum of broilers. Poultry Science, 2007, 86(1): 118-122 CrossRef
  36. Zabashta N.N., Golovko E.N., Vlasov A.B. Sbornik nauchnykh trudov «Severo-Kavkazskiy nauchno-issledovatel’skiy institut zhivotnovodstva», 2017, 6(2): 158-163 (in Russ.).
  37. Buyarov V.S., Chervonova I.V. Vestnik APK Stavropol’ya, 2015, 2(18): 125-129 (in Russ.).
  38. Buyarov V.S., Chervonova I.V. Ptitsa i ptitseprodukty, 2012, 1: 31-34 (in Russ.).
  39. Kosse A.G. Produktivnost’ tsyplyat-broylerov pri ispol’ovanii laktulozosoderzhashchikh dobavok. Avtoreferat kandidatskoy dissertatsii [Productivity of broiler chickens fed lactulose-containing additives. PhD Thesis]. Persianovskiy, 2014 (in Russ.).
  40. Calik A., Ergün A. Effect of lactulose supplementation on growth performance, intestinal histomorphology, cecal microbial population, and short-chain fatty acid composition of broiler chickens. Poultry Science, 2015, 94(9): 2173-2182 CrossRef
  41. Bovkun G., Bobrik O., Malik N., Panin V., Skanchev A. Ptitsevodstvo, 2003, 3: 10 (in Russ.).
  42. Ryabtseva S.A., Khramtsov A.G., Budkevich R.O., Anisimov G.S., Chuklo A.O., Shpak M.A. Voprosy pitaniya, 2020, 89(2): 5-20 (in Russ.).
  43. Guerra-Ordaz A.A., González-Ortiz G., La Ragione R.M., Woodward M.J., Collins J.W., Pérez J.F., Martín-Orúe S.M. Lactulose and Lactobacillus plantarum, a potential complementary synbiotic to control postweaning colibacillosis in piglet. Applied and Environmental Microbiology, 2014, 80(16): 4879-4886 CrossRef
  44. Cheled-Shoval S.L., Gamage N.S., Amit-Romach E., Forder R., Marshal J., Van Kessel A., Uni Z. Differences in intestinal mucin dynamics between germ-free and conventionally reared chickens after mannan-oligosaccharide supplementation. Poultry Science, 2014, 93(3): 636-644 CrossRef
  45. Slozhenkina M.I., Gorlov I.F., Komarova Z.B., Mosolov A.A., Karabalina N.A., Kurmasheva S.S. Agrarnaya Rossiya, 2022, 4: 32-36 (in Russ.).
  46. Martínez-Villaluenga C., Cardelle-Cobas A., Corzo N., Olano A., Villamiel M. Optimization of conditions for galactooligosaccharide synthesis during lactose hydrolysis by β-galactosidase from Kluyveromyces lactis (Lactozym 3000 L HP G). Food Chemistry, 2008, 107(1): 258-264.
  47. Cardelle-Cobas A., Martínez-Villaluenga C., Villamiel M., Olano A., Corzo N. Synthesis of oligosaccharides derived from lactulose and pectinex ultra SP-L. J. Agric. FoodChem., 2008, 56(9): 3328-3333 CrossRef
  48. Nikolaenko V.P., Khramtsov A.G., Eremina A.I., Dykalo N.Ya., Shkola S.S. Veterinariya, 2021, 2: 56-60 (in Russ.).
  49. Kikusato M., Nanto F., Mukai K., Toyomizu M. Effects of trehalose supplementation on the growth performance and intestinal innate immunity of juvenile chicks. British Poultry Science,2016, 57(3): 375-380 CrossRef<
  50. Stepanenko B.N. Kurs organicheskoy khimii [Organic chemistry]. Moscow, 1974 (in Russ.).
  51. Tyukavkina N.A., Baukov Yu.I. Bioorganicheskaya khimiya. 2-e izdanie, pererabotannoe i dopolnennoe [Bioorganic chemistry]. Moscow, 1991 (in Russ.).
  52. Bucław M. The use of inulin in poultry feeding: a review. J. Anim. Physiol. Anim. Nutr. (Berl.), 2016, 100(6): 1015-1022 CrossRef<
  53. Park S.O., Park B.S. Effect of dietary microencapsulated-inulin on carcass characteristics and growth performance in broiler chickens. Journal of Animal and Veterinary Advances, 2011, 10(10): 1342-1349 CrossRef
  54. Li X., Qiang L., Xu C.L. Effects of supplementation of fructooligosaccharide and/or Bacillus subtilis to diets on performance and on intestinal microflora in broilers. Archiv fur Tierzucht, 2008, 51(1): 64-70 CrossRef
  55. Mookiah S., Sieo C.C., Ramasamy K., Abdullah N., Ho Y.W. Effects of dietary prebiotics, probiotic and synbiotics on performance, caecal bacterial populations and caecal fermentation concentrations of broiler chickens. J. Sci. Food Agric., 2014, 94(2): 341-348 CrossRef
  56. Pruszynska-Oszmalek E., Kolodziejski P.A., Stadnicka K., Sassek M., Chalupka D., Kuston B., Nogowski L., Mackowiak P., Maiorano G., Jankowski J., Bednarczyk M. In ovo injection of prebiotics and synbiotics affects the digestive potency of the pancreas in growing chickens. Poultry Science, 2015, 94(8): 1909-1916 CrossRef
  57. Xu Z.R., Hu C.H., Xia M.S., Zhan X.A., Wang M.Q. Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poultry Science, 2003, 82: 1030-1036 CrossRef







Full article PDF (Rus)

Full article PDF (Eng)