PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2022.4.681eng

UDC: 636.2:637.046

Acknowledgements:
Supported financially by Ministry of Science and Higher Education of the Russian Federation (НИОКТР АААА-А18-118021590136-7). Registration number ЕГИСУ theme НИР ГЗ 2021-2023 121052600314-1

 

MINERAL COMPOSITION OF COW MILK — А MINI REVIEW

O.A. Voronina, N.V. Bogolyubova, S.Yu. Zaitsev

Ernst Federal Research Center for Animal Husbandry, 60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail voroninaok-senia@inbox.ru (✉ corresponding author), 652202@mail.ru, s.y.zaitsev@mail.ru

ORCID:
Voronina O.A. orcid.org/0000-0002-6774-4288
Zaitsev S.Yu. orcid.org/0000-0003-1533-8680
Bogolyubova N.V. orcid.org/0000-0002-0520-7022

Received June 22, 2021

Milk is a secretory product of the mammary glands which synthetic capacity is extremely high at the peak of lactation. Cow's milk is a generally recognized source of Ca, K, Mg, Na, P, Se, and Zn for human nutrition. About 50 mineral elements were found in milk (A.V. Skalny, 2019). Given the fact that the deficiency of micro- and macroelements is becoming global (R.L. Bailey, 2015; A.V. Skalny, 2019), interest in milk to solve this problem is increasing (M.L. Astolfi, 2020). Milk is the only source of nutrients for newborn calves. The composition and proportions of milk components are optimal for their gastrointestinal absorption, which ensures the successful survival of the species. The quantity and structural composition of macro- and microelements of milk are complementary to active anabolism and the development of the musculoskeletal system, in particular the skeleton of young animals. The purpose of our review is to summarize relevant data on micro- and macroelements in milk with regard to their biological role in cows. Comparative analysis shows a wide range of mineral content of milk. The content of Zn can vary from 3.09 to 6.48 mg/kg, Cu from 0.83 to 1.73 mg/kg (S.M. Zain, 2016; S. Kinal, 2007). This may be due to i) alimentary factors (A. Costa, 2021) which are closely related to the natural distribution of micro- and macroelements in the Earth’s crust (S.M. Zain, 2016) and ii) synergistic and antagonistic interactions of elements in their assimilation (N. Bortey-Sam, 2015; A.V. Skalny, 2019). For example, an excess of potassium and calcium reduces the absorption of magnesium and phosphorus (A.V. Skalny, 2019), and a deficiency of vitamin D disrupts the absorption of Ca (W.P. Weiss, 2017). We also note the variability of the mineral content depending on the lactation period, season of the year (S.M. O’Kane, 2018; E.S. Kandinskaya, 2019), type of housing and feeding (V.S. Kozyr, 2015; I. Orzhales, 2018). Milk iodine and selenium concentration measured by inductively coupled plasma mass spectrometry were higher than indicated in previously created food composition databases (S.M. O’Kane, 2018). Thus, reliance on previously created databases should be partial when choosing milk as a source of mineral components to compensate for the identified deficiency in the human diet. Newly formed databases should be more accessible to the consumer. In addition, molecular tools should help to identify target genes and proteins as markers for assessing the level of macro- and microelements (W.P. Weiss, 2017; A. Costa, 2021), but so far little progress has been made in this research area. Precise elemental analysis of milk is necessary both to confirm its safety in terms of toxic macro- and microelements, and to solve the mineral deficiency problem. 

Keywords: cow milk, mineral composition, microelements, macronutrients, fodder, blood.

 

REFERENCES

  1. Gorbatova K.K., Gun’kovaP.I. Biokhimiya moloka i molochnykh produktov [Biochemistry of milk and dairy products]. St. Petersburg, 2010 (in Russ.).
  2. Komine-Aizawa S., Ito S., Aizawa S., Namiki T., Hayakawa S. Cow milk exosomes activate NK cells and γδT cells in human PBMCs in vitro. Immunol. Med., 2020, 43(4): 161-170 CrossRef
  3. Khan I.T., Nadeem M., Imran M., Ullah R., Ajmal M., Jaspal M.H. Antioxidant properties of Milk and dairy products: a comprehensive review of the current knowledge. Lipids Health Dis., 2019, 18(1): 1-14 CrossRef
  4. Pipino C., Mandatori D., Buccella F., Lanuti P., Preziuso A., Castellani F., Grotta L., Tomo P., Marchetti S., Pietro N., Cichelli A., Pandolfi A., Martino G. Identification and characterization of a stem cell-like population in bovine milk: a potential new source for regenerative medicine in veterinary. Stem Cells and Development, 2018, 27(7): 1587-1597 CrossRef
  5. Rahman M.M., Gofur M.R., Rahman M.S., Bari F.Y., Juyena N.S. Effect of genotype on reproductive and productive performances of dairy cows under rural context in Bangladesh. International Journal of Livestock Research, 2016, 6(6): 9-24 CrossRef
  6. Dufrasne I., Istasse L., Lambert R., Robaye V., Hornick J.L. Study on environmental factors influencing the urea content of cow milk in Wallonia (Belgium). Biotechnologie, Agronomie, Société et Environnement, 2010, 14: 59-66.
  7. Shuvarikov A.S. Izvestiya TSKhA, 2012, 6: 186-193 (in Russ.).
  8. Astolfi M.L., Marconi E., Protano C., Canepari S. Comparative elemental analysis of dairy milk and plant-based milk alternatives. Food Control, 2020, 116: 107327 CrossRef
  9. Sethi S., Tyagi S.K., Anurag R.K. Plant-based milk alternatives an emerging segment of functional beverages: a review. J. Food Sci. Technol., 2016, 53: 3408-3423 CrossRef
  10. Zamberlin Š., Neven A., Havranek J., Samaržija D. Mineral elements in milk and dairy products. Mljekarstvo,2012, 62: 111-125.
  11. Zabodalova L.A., Evstigneeva T.N. Tekhnologiya tsel’nomolochnykh produktov i morozhennogo [Technology of whole milk products and ice cream]. St. Petersburg, 2013 (in Russ.).
  12. Kharitonov E.L. Fiziologiya i biokhimiya pitaniya molochnogo skota [Physiology and biochemistry of dairy cattle nutrition]. Borovsk, 2011 (in Russ.).
  13. Kharitonov E.L., Panyushkin D.E., Makar Z.N. Niva Povolzh’ya, 2019, 1(50): 79-86 CrossRef (in Russ.).
  14. Zaitsev S.Yu., Voronina O.A., Dovzhenko N.A., Milaeva I.V., Tsarkova M.S. Comprehensive analysis of the colloid biochemical properties of animal milk as complex multicomponent system. BioNanoScience, 2016, 4(6): 1-8 CrossRef
  15. Skal’nyy A.V. Mikroеlementy: bodrost’, zdorov’e, dolgoletie [Trace elements: vitality, health, longevity]. Moscow, 2019 (in Russ.).
  16. Kryukov V.S., Kuznetsov S.G., Nekrasov R.V., Zinov’ev S.V. Problemy biologii produktivnykh zhivotnykh, 2020, 3: 27-54 CrossRef (in Russ.).
  17. Beznosova E.A., Beznosov G.A., Ustyugov A.D., Flefel’ Kh.Е. Agrarnyy vestnik Urala, 2019, 5(184): 28-32 CrossRef (in Russ.)
  18. Baumgard L.H., Collier R.J., Bauman D.E. A 100-year review: regulation of nutrient partitioning to support lactation. Journal of Dairy Science, 2017, 100(12): 10353-10366 CrossRef
  19. Bortey-Sam N., Nakayama S.M.M., Ikenaka Y., Akoto O., Baidoo E., Yohannes Y.B., Mizukawa H., Ishizuka M. Human health risks from metals and metalloid via consumption of food animals near gold mines in Tarkwa, Ghana: estimation of the daily intakes and target hazard quotients (THQs). Ecotoxicology and Environmental Safety,2015, 111: 160-167 CrossRef
  20. Skalny A.V., Salnikova E.V., Burtseva T.I., Skalnaya M.G., Tinkov A.A. Zinc, copper, cadmium, and lead levels in cattle tissues in relation to different metal levels in ground water and soil. Environmental Science and Pollution Research, 2019, 26(1): 559-569 CrossRef
  21. Liseev I.K. Problemy tsivilizatsionnogo razvitiya, 2020, 2(1): 20-34 CrossRef (in Russ.).
  22. Zain S.M., Behkami S., Bakirdere S., Koki I.B. Milk authentication and discrimination via metal content clustering — a case of comparing milk from Malaysia and selected countries of the world. Food Control, 2016, 66: 306-314 CrossRef
  23. Sun H., Wang D., Wang B., Wang J., Liu H., Guan L.L., Liu J. Metabolomics of four biofluids from dairy cows: potential biomarkers for milk production and quality. Journal of Proteome Research, 2015, 14(2): 1287-1298 CrossRef
  24. Kaneko J.J., Harvey J.W., Bruss M.L. Clinical Biochemistry of Domestic Animals. Amsterdam, 2008.
  25. Zaytsev S.Yu. Biologicheskaya khimiya: ot biologicheski aktivnykh veshchestv do organov i tkaney zhivotnykh [Biochemistry: from bioactive substances to animal organs and tissues]. Moscow, 2017 (in Russ.).
  26. Bailey R.L., West K.P., Black R.E. The epidemiology of global micronutrient deficiencies. Annals of Nutrition and Metabolism, 2015, 66(9): 22-33 CrossRef
  27. Smirnov A.V. Voprosy normativno-pravovogo regulirovaniya v veterinarii, 2014, 2: 19-22 (in Russ.).
  28. Strusiska D., Mierzejewska J., Skok A. Concentration of mineral components, β-carotene, vitamins A and E in cow colostrum and milk when using mineral-vitamin supplements. Medycyna Weterynaryjna, 2004, 60(2): 202-206.
  29. Ran L., Wu X., Shen X., Zhang K., Ren F., Huang K. Effects of selenium form on blood and milk selenium concentrations, milk component and milk fatty acid composition in dairy cows. Journal of the Science of Food and Agriculture, 2010, 90(13): 2214-2219 CrossRef
  30. Rius A.G, Appuhamy J., Cyriac J., Kirovski D., Becvar O., Escobar J., McGilliard M.L., Bequette B.J., Akers R.M., Hanigan M.D., Regulation of protein synthesis in mammary glands of lactating dairy cows by starch and amino acids. Journal of Dairy Science, 2010, 93: 3114-3127 CrossRef
  31. Kharitonov E.L., Panyushkin D.E. Problemy biologii produktivnykh zhivotnykh, 2016, 2: 76-106 (in Russ.).
  32. Colditz I.G., HineB.C. Resilience in farm animals: biology, management, breeding and implications for animal welfare. Animal Production Science, 2016, 56(12): 1961-1983 CrossRef
  33. Rodenburg J. Robotic milking: technology, farm design, and effects on work flow. Journal of Dairy Science, 2017, 9(100): 7729-7738 CrossRef
  34. Nogalska A., Momot M., Sobczuk-Szul M., Pogorzelska-Przybyłek P., Nogalski Z. Calcium and magnesium contents in the milk of high-yielding cows. Journal of Elementology, 2017, 22(3): 809-815 CrossRef
  35. Canario L., Mignon-Grasteau S., Dupont-Nivet M., Phocas F. Genetics of behavioural adaptation of livestock to farming conditions. Animal, 2013, 7(3): 357-377 CrossRef
  36. Kapsamun A.D., Ivanova N.N., Pavlyuchik E.N., Pushkina L.V. Mezhdunarodnyy nauchno-issledovatel’skiy zhurnal, 2019, 6-1(84): 107-110 CrossRef (in Russ.).
  37. Sawa A., Siatka K., Krężel-Czopek S. Effect of age at first calving on first lactation milk yield, lifetime milk production and longevity of cows. Annals of Animal Science, 2019, 19(1): 189-200 CrossRef
  38. Li S., Wang Q., Lin X., Jin X., Liu L., Wang C., Chen Q., Liu J., Liu H. The use of “omics” in lactation research in dairy cows. International Journal of Molecular Sciences, 2017, 18(5): 983 CrossRef
  39. Vailati-Riboni M., Elolimy A., Loor J.J. Nutritional systems biology to elucidate adaptations in lactation physiology of dairy cows. Systems Biology in Animal Production and Health, 2016, 2: 97-125 CrossRef
  40. Connor E.E. Invited review: Improving feed efficiency in dairy production: challenges and possibilities. Animal, 2015, 9(3): 395-408 CrossRef
  41. Kandinskaya E.S., Red’kin S.V., Chebakova, G.V. Veterinariya segodnya, 2019, 1: 29-33 CrossRef (in Russ.).
  42. Durand M., Komisarczuk S. Influence of major minerals on rumen microbiota. The Journal of nutrition, 1988, 118(2): 249-260 CrossRef
  43. Malacarne M., Franceschi P., Formaggioni P., Sandri S., Mariani P., Summer A. Influence of micellar calcium and phosphorus onrennet coagulation properties of cows milk. JournalofDairyResearch, 2014, 81: 129-136CrossRef
  44. Ivashkevich L.S., Velentey Yu.N., Gonta P.P. Zdorov’e i okruzhayushchaya sreda, 2009, 14: 104-107 (in Russ.).
  45. Kandeel S.A., Megahed A.A., Constable P.D. Evaluation of hand‐held sodium, potassium, calcium, and electrical conductivity meters for diagnosing subclinical mastitis and intramammary infection in dairy cattle. Journal of Veterinary Internal Medicine, 2019, 33(5): 2343-2353 CrossRef
  46. Abramowicz B., Kurek Ł., Chałabis-Mazurek A., Lutnicki K. Copper and iron deficiency in dairy cattle. Journal of Elementology, 2021, 26(1): 241-248 CrossRef
  47. Joerling J., Doll K. Monitoring of iron deficiency in calves by determination of serum ferritin in comparison with serum iron: a preliminary study. Open Veterinary Journal, 2019, 9(2): 177-184 CrossRef
  48. Flachowsky G., Franke K., Meyer U., Leiterer M., Schöne F. Influencing factors on iodine content of cow milk. European Journal of Nutrition, 2014, 53(2): 351-365 CrossRef
  49. Costa A., Niero G., Franzoi M., Cassandro M., De Marchi M., Penasa M. Iodine content in bovine milk is lowly heritable and shows limited genetic variation. Journal of Dairy Science, 2021, 104(3): 3292-3297 CrossRef
  50. Dobrzanski Z., Kołacz R., Gorecka H., Chojnacka K., Bartkowiak A. The content of microelements and trace elements in raw milk from cows in the Silesian Region. Polish Journal of Environmental Studies, 2005, 14(5): 685-689.
  51. Khan I.T., Nadeem M., Imran M., Ayaz M., Ajmal M., Ellahi M.Y., Khalique A. Antioxidant capacity and fatty acids characterization of heat treated cow and buffalo milk. Lipids in Health and Disease, 2017, 16(1): 163 CrossRef
  52. Kinal S., Korniewicz A., Jamroz D., Zieminski R., Slupczynska M. Dietary effects of zinc, copper and manganese chelates and sulphates on dairy cows. Journal of Food, Agriculture & Environment, 2005, 3(1): 168-172.
  53. Kinal S., Korniewicz A., Słupczyńska M., Bodarski R., Korniewicz D., Čermák B. Effect of the application of bioplexes of zinc, copper and manganese on milk quality and composition of milk and colostrum and some indices of the blood metabolic profile of cows. Czech Journal of Animal Science, 2007, 52(12): 423-429 CrossRef
  54. Ferreira G.M., Petzer I.M. Injectable organic and inorganic selenium in dairy cows — effects on milk, blood and somatic cell count levels. Onderstepoort Journal of Veterinary Research, 2019, 86(1): a1664 CrossRef
  55. Mehdi Y., Dufrasne I. Selenium in cattle: a review. Molecules, 2016, 21(4): 545 CrossRef
  56. Pilarczyk R., Wojcik J., Czerniak P., Sablik P., Pilarczyk B., Tomza-Marciniak A. Concentrations of toxic heavy metals and trace elements in raw milk of Simmental and Holstein-Friesian cows from organic farm. Environmental Monitoring and Assessment, 2013, 185(10): 8383-8392 CrossRef
  57. Barlowska J., Litwinczuk Z., Krol J., Kedzierska-Matysek M. Fatty acid profile and minerals content milk from cows of various breeds over spring-summer feeding period. Polish Journal of Food and Nutrition Sciences, 2006, 15(1s): 13-16.   
  58. O’Kane S.M., Pourshahidi L.K., Mulhern M.S., Weir R.R., Hill S., O’Reilly J., Kmiotek D., Deitrich C., Mackle E.M., Fitzgerald E., Lowis C., Johnston M., Strain J.J., Yeates A.J. The effect of processing and seasonality on the iodine and selenium concentration of cow’s milk produced in Northern Ireland (NI): implications for population dietary intake. Nutrients, 2018, 10(3): 287 CrossRef
  59. Weiss W.P. A 100-Year review: from ascorbic acid to zinc — mineral and vitamin nutrition of dairy cows. Journal of Dairy Science, 2017, 100(12): 10045-10060 CrossRef
  60. Sinclair L.A., Hart K.J., Johnson A.M. Effect of inorganic or organic copper fed without or with added sulfur and molybdenum on the performance, indicators of copper status, and hepatic mRNA in dairy cows. Journal of Dairy Science, 2013, 96(7): 4355-4367 CrossRef
  61. Kim S.B., Jung S.H., Do Y.J., Jung Y.H., Choe C., Ha S., Jeong H.Y., Cho A., Oh S.I., Kim E., Yoo J.G., Kim S. Haemato-chemical and immune variations in Holstein cows at different stages of lactation, parity, and age. Veterinarni Medicina, 2020, 65(03): 95-103 CrossRef
  62. Fadlalla I.M.T., Omer S.A., Atta M. Determination of some serum macroelement minerals levels at different lactation of dairy cows and their correlations. Scientific African, 2020, 8: e00351 CrossRef
  63. Aleri J.W., Hine B.C., Pyman M.F., Mansell P.D., Wales W.J., Mallard B., Fisher A.D. An assessment of immune and stress responsiveness in Holstein-Friesian cows selected for high and low feed conversion efficiency. Animal Production Science,2017, 57(2): 244-251 CrossRef
  64. Sundrum A. Metabolic disorders in the transition period indicate that the dairy cows’ ability to adapt is overstressed. Animals, 2015, 5: 978-1020 CrossRef
  65. Opsomer G. Interaction between metabolic challenges and productivity in high yielding dairy cows. Japanese Journal of Veterinary Research,2015, 63(1): S1-S14 CrossRef
  66. Orjales I., Herrero-Latorre C., Miranda M., Rey-Crespo F., Rodriguez-Bermudez R., Lopez-Alonso M. Evaluation of trace element status of organic dairy cattle. Animal, 2018, 12(6): 1296-1305 CrossRef
  67. Kozyr’ V.S. Vestnik APK Stavropol’ya, 2015, 2(18): 135-139 (in Russ.).
  68. Lane T.W., Morel F.M. A biological function for cadmium in marine diatoms. Proceedings of the National Academy of Sciences, 2000, 97(9): 4627-4631 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)