PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2022.4.706eng

UDC: 636.2.034:618.19-002:615.355:582.282.123.4

Acknowledgements:
Supported financially from the Russian Science Foundation (project No. 20-16-00085)

 

PROSPECTS FOR THE APPLICATION OF EXTRACELLULAR PROTEINASES OF MICROMYCETE Aspergillus ochraceus IN THE TREATMENT OF MASTITIS IN COWS

S.V. Shabunin, G.A. Vostroilova, N.A. Khokhlova, D.I. Shabanov,
G.N. Bliznetsova, T.I. Ermakova, I.T. Shaposhnikov

All-Russian Research Veterinary Institute of Pathology, Pharmacology and Therapy, 114-b, ul. Lomonosova, Voronezh, 394087 Russia, e-mail vnivipat@mail.ru, gvostroilova@mail.ru (✉ corresponding author), nina_xoxlova@mail.ru, am7d@mail.ru, gnbliznetsova@mail.ru, ermakova53@list.ru, 36011958@mail.ru

ORCID:
Shabunin S.V. orcid.org/0000-0002-2689-6998
Bliznetsova G.N. orcid.org/0000-0002-1042-9279
Vostroilova G.A. orcid.org/0000-0002-2960-038X
Ermakova T.I. orcid.org/0000-0003-1069-1223
Khokhlova N.A. orcid.org/0000-0001-6861-2554
Shaposhnikov I.T. orcid.org/0000-0003-0190-9083
Shabanov D.I. orcid.org/0000-0002-1574-1317

Received May 5, 2022

Cow mastitis, the etiological agents of which are pathogenic and opportunistic microorganisms, is considered one of the diseases that cause significant economic damage to dairy farming with a risk to the health of dairy consumers. With bacterial infections of the mammary gland in cows, the formation of protein exudates occurs. Proteinases that reduce the severity of the inflammatory response are included in the treatment regimens for various pathologies in medicine, but this practice is limited in veterinary medicine. In this work, we proved that a drug based on Aspergillus ochraceus proteinase increases the effectiveness of antibiotic therapy for cow mastitis. The aim of the study was to experimentally evaluate the possibility of using A. ochraceus BKM F-4104D micromycete proteinase in veterinary medicine. The studies were performed on lactating black-and-white cows (Bos taurus) with milk productivity for the previous lactation of 6900-7110 kg, which were divided into two groups (n = 16 each). All experimental animals were intracisternally injected with an anti-mastitis drug based on the beta-lactam antibiotic amoxicillin, clavulonic acid and prednisolone (ACP) at a dose of 3.0 g (one syringe dispenser) once per day for 3-4 days until the disappearance of clinical signs of mastitis. In the second group, 12 hours before the use of the ACP preparation, animals were additionally intracisternally administered a drug with the working name PAO-1. PAO-1 is an oil suspension containing 4.0 g (syringe-dosing device) extracellular proteinase of the micromycete A. ochraceus BKM F-4104D as an active ingredient. This proteinase is able to degrade heterogeneous protein substrates in a wide range of environmental conditions, which can increase the effectiveness of the etiotropic therapy of bovine mastitis. The condition of the breast, morpho-biochemical status were evaluated before treatment, after treatment and 7-10 days after the end of the administration of the drugs. It was found that the combined use of an antimicrobial agent and a preparation based on the proteinase of the micromycete A. ochraceus BKM F-4104D was accompanied by the recovery of 93.8 % of cows with clinical mastitis, which is 12.5 % higher (p < 0.05) than when using only the antimastitis drug ACP. Recovery of animals was characterized by normalization of morpho-biochemical status. The amount of β-globulins increased by 14.2 % (p < 0.05), triglycerides by 31.4 % (p < 0.05), creatinine decreased by 24.2 % (p < 0.05) compared to animals treated with ACP therapy. Endogenous intoxication and lipid peroxidation decreased, e.g., the concentration of malonic dialdehyde decreased by 40.4 % (p < 0.00005), medium-weight molecules by 46.3 % (p < 0.00005), NOx 3.6-fold ( p < 0.00005), endogenous intoxication index was 33.7 % lower (p < 0.005) compared to sick animals. The activity of the enzymatic and non-enzymatic components of the antioxidant defense increased, the concentration of vitamin A increased by 36.8 % (p < 0.005), vitamin E by 32.8 % (p < 0.05), vitamin C by 39.2 % (p < 0.005), catalase activity increased by 39.4 % (p < 0.005), glutathione peroxidase activity increased by 30.6 % (p < 0.005) compared to sick animals. Optimization of protein, lipid and mineral metabolism occurred. After the end of the therapeutic course, the number of somatic cells and their composition in the secret of the udder was normalized and there was no pathogenic microflora, which confirmes the complete clinical recovery of the cows. Our findings indicate that Aspergillus ochraceus BKM F-4104D micromycete proteinase which has high anticoagulant and fibrinolytic activity, can be very promising for the creation of domestically produced enzymatic veterinary drugs competitive in the world market.

Keywords: proteinases, Aspergillus ochraceus BKM F-4104D, PAO-1 drug, mastitis, cattle, enzyme preparations, combination therapy.

 

REFERENCES

  1. Babra C., Tiwari J.G., Pier G., Thein T.H., Sunagar R., Sundareshan S., Isloor S., Hegde N.R., de Wet S., Deighton M., Gibson J., Costantino P., Wetherall J., Mukkur T. The persistence of biofilm-associated antibiotic resistance of Staphylococcus aureus isolated from clinical bovine mastitis cases in Australia. Folia Microbiologica, 2013, 58(6): 469-474 CrossRef
  2. Marama A., Mamu G.,  Birhanu T. Prevalence and antibiotic resistance of Staphylococcus aureus mastitis in Holeta area, Western Ethiopia. Global Veterinaria, 2016, 16(4): 365-370 CrossRef
  3. Tanzin T., Nazir K.H.M.N.H., Zahan M.N., Parvej M.S., Zesmin K., Rahman M.T. Antibiotic resistance profile of bacteria isolated from raw milk samples of cattle and buffaloes. Journal of Advanced Veterinary and Animal Research, 2016, 3(1): 62-67 CrossRef
  4. El-Ashker M., Gwida  M., Monecke  S., El-Gohary F., Ehricht  R., Elsayed  M., Akinduti  P., El-Fateh M., Maurischat  S. Antimicrobial resistance pattern and virulence profile of S. aureus isolated from household cattle and buffalo with mastitis in Egypt. Veterinary Microbiology, 2020, 240: 108535 CrossRef
  5. Sharun K., Dhama K., Tiwari R., Gugjoo M.B., Yatoo M.I., Patel S.K., Pathak M., Karthik K., Khurana S.K., Singh R., Puvvala B., Amarpal, Singh R., Singh K.P., Chaicumpa W. Advances in therapeutic and managemental approaches of bovine mastitis: a comprehensive review. The Veterinary Quarterly, 2021, 41(1): 107-136 CrossRef
  6. Brahmadathan N.K. Molecular biology of Group A Streptococcus and its implications in vaccine strategies. Indian Journal of Medical Microbiology, 2017, 35(2): 176-183 CrossRef
  7. Frost H.R., Sanderson-Smith M., Walker M., Botteaux A., Smeesters P.R. Group A streptococcal M-like proteins: from pathogenesis to vaccine potential. FEMS Microbiology Reviews, 2018, 42(2): 193-204 CrossRef
  8. Wald R., Hess C., Urbantke V., Wittek T., Baumgartner M. Characterization of Staphylococcus species isolated from bovine quarter milk samples. Animals,2019, 9(5): 200 CrossRef
  9. Su Y., Yu C.Y., Tsai Y., Wang S.H., Lee C., Chu C. Fluoroquinolone-resistant and extended-spectrum β-lactamase-producing Escherichia coli from the milk of cows with clinical mastitis in Southern Taiwan. Journal of Microbiology, Immunology, and Infection, 2016, 49(6): 892-901 CrossRef
  10. Shah M.S., Qureshi S., Kashoo Z., Farooq S., Wani S.A., Hussain M.I., Banday M.S., Khan A.A., Gull B., Habib B., Khan S.F., Dar B.A. Methicillin resistance genes and in vitro biofilm formation among Staphylococcus aureus isolates from bovine mastitis in India. Comparative Immunology, Microbiology and Infectious Diseases, 2019, 64: 117-124 CrossRef
  11. Neuman H., Forsythe P., Uzan A., Avni O., Koren O. Antibiotics in early life: dysbiosis and the damage done. FEMS Microbiology Reviews, 2018, 42(4): 489-499 CrossRef
  12. Zyryanov S.K., Baybulatova E.A. Antibiotiki i khimioterapiya, 2019, 64(3-4): 81-91 CrossRef (in Russ.).
  13. Wierup M. The control of microbial diseases in animals: alternatives to the use of antibiotics. International Journal of Antimicrobial Agents, 2000, 14(4): 315-319 CrossRef
  14. Reshi A.A, Husain I., Bhat S.A., Rehman M.U., Razak R., Bilal S., Manzoor R. Mir M.R., Bovine mastitis as an evolving disease and its impact on the dairy industry. International Journal of Current Research and Review, 2015, 7(15): 47-55.
  15. Rosales E.B., Ametaj B.N. Reproductive tract infections in dairy cows: can probiotics curb down the incidence rate? Dairy, 2021, 2(1): 40-64 CrossRef
  16. Wald M., Olejár T., Sebková V., Zadinová M., Boubelík M., Poucková P. Mixture of trypsin, chymotrypsin, and papain reduces formation of metastases and extends survival time of C57Bl6 mice with syngenic melanoma B16. Cancer Chemotherapy and Pharmacology, 2001, 47: 16-22 CrossRef
  17. Petushkova A.I., Zamyatnin A.A. Redox-mediated post-translational modifications of proteolytic enzymes and their role in protease functioning. Biomolecules, 2020, 10(4): 650 CrossRef
  18. Zanoelo F.F., Giannesi G.C., Cabral H. Proteolytic enzymes: biochemical properties, production and biotechnological application. Fungal enzymes /M.L.T.M. Polizeli, M. Rai (eds.). Boca Raton, CRC Press, London, 2013.
  19. De Souza P.M., Bittencourt M.L., Caprara C.C., de Freitas M., de Almeida R.P., Silveira D., Fonseca Y.M., Ferreira Filho E.X., Pessoa Junior A., Magalhães P.O. A biotechnology perspective of fungal proteases. Brazilian Journal of Microbiology, 2015, 46(2): 337-346 CrossRef
  20. Osmolovskiy A.A., Zvonareva E.S., Kreyer V.G., Baranova N.A., Egorov N.S. Bioorganicheskaya khimiya, 2014, 40(6): 688-694 CrossRef (in Russ.).
  21. Komarevtsev S.K., Evseev P.V., Shneider M.M., Popova E.A., Tupikin A.E., Stepanenko V.N., Kabilov M.R., Shabunin S.V., Osmolovskiy A.A., Miroshnikov K.A. Gene analysis, cloning, and heterologous expression of protease from a micromycete Aspergillus ochraceus capable of activating protein c of blood plasma. Microorganisms, 2021, 9(9): 1936 CrossRef
  22. Smirnov A.M., Shabunin S.V., Retskiy M.I., Donnik I.M., Skira V.N., Suvorov A.V., Babyshova L.V. Novye metody issledovaniy po problemam veterinarnoy meditsiny. Chast’ III. Metody issledovaniy po problemam nezaraznoy patologii u produktivnykh zhivotnykh [New research methods of veterinary medicine. Part III. Methods of research on the problems of non-infectious pathology of productive animals]. Moscow, 2007 (in Russ.).
  23. Retskiy M.I., Shabunin S.V., Bliznetsova G.N., Rogacheva T.E., Ermolova T.G., Fomenko O.Yu., Bratchenko Е.V., Dubovtsev V.Yu., Kaverin N.N., Tsebrzhinskiy O.I. Metodicheskie polozheniya po izucheniyu protsessov svobodnoradikal’nogo okisleniya i sistemy antioksidantnoy zashchity organizma [Methodological provisions for the study of free radical oxidation and antioxidant protection]. Voronezh, 2010 (in Russ.).
  24. EMEA VICH Topic GL9 (GCP) (2000). Step 7 Consensus Guideline. CVMP/VICH/595/98-FINAL; https://www.ema.europa.eu/en/documents/scientific-guideline/vich-gl9-good-clinical-practices-step-7_en.pdf.
  25. H2020-ISIB-2015-1/696367/4D4F. Data Driven Dairy Decisions For Farmers/WP4 Tailored Standard Operating Procedures Deliverable 4.1 Standard Operating Procedures/Ref. Ares (2017) 4284365-01/09/2017.
  26. GOST 23453-2014 «Moloko syroe. Metody opredeleniya somaticheskikh kletok (s Popravkoy)». Data vvedeniya 2016-01-01 [GOST 23453-2014 Raw milk. Methods for the determination of somatic cells (with Amendment). Introduction date 2016-01-01]. Moscow, 2016 (in Russ.).
  27. Isakova M.N., Ryaposova M.V., Oparina O.Yu. Veterinarnyy farmakologicheskiy vestnik,2019, 1(6): 91-95 CrossRef (in Russ.).
  28. Akhtar N.M., Naseer R., Farooqi A.Z., Aziz W., Nazir M. Oral enzyme combination versus diclofenac in the treatment of osteoarthritis of the knee-a double-blind prospective randomized study. Clinical Rheumatology, 2004, 23(5): 410-415 CrossRef
  29. Sinclair R.T., Ryan T.J. Proteolytic enzymes in wound healing: the role of enzymatic debridement. Australasian Journal of Dermatology, 1994, 35(1): 35-41 CrossRef
  30. Osmolovskiy, A.A., Kreier, V.G., Baranova, N.A., Egorov N.S. Properties of extracellular plasmin-like proteases of Aspergillus ochraceus micromycete. Applied Biochemistry and Microbiology, 2017, 53 (4): 429–-434 CrossRef
  31. Osmolovskiy A.A., Kreyer V.G., Baranova N.A., Kurakov A.V., Egorov N.S. Prikladnaya biokhimiya i mikrobiologiya, 2015, 51(1): 86-92 CrossRef (in Russ.).
  32. Shabunin S.V., Vostroilova G.A., Khokhlova N.A., Komarevtsev S.K., Mikhalev V.I. Biological activity of extracellular protease preparations of Aspergillus ochraceus micromycete on the Paramecium caudatum model. IOP Conf. Series: Earth and Environmental Science, 2021, 699: 012009 CrossRef
  33. Indo H.P., Yen H., Nakanishi I., Matsumoto K., Tamura M., Nagano Y., Matsui H., Gusev O., Cornette R., Okuda T., Minamiyama Y., Ichikawa H., Suenaga S., Oki M., Sato T., Ozawa T., Clair D.K.S., Majima H.J. A mitochondrial superoxide theory for oxidative stress diseases and aging. Journal of Clinical Biochemistry and Nutrition, 2015, 1(56): 1-7 CrossRef
  34. Tovmasyan A., Reboucas J.S., Benov L. Simple biological systems for assessing the activity of superoxide dismutase mimics. Antioxidants & Redox Signaling, 2014, 20(15): 2416-2436 CrossRef
  35. Noctor G., Lelarge-Trouverie C., Mhamdi A. The metabolomics of oxidative stress. Phytochemistry, 2015, 112: 33-53 CrossRef
  36. Betteridge D. What is oxidative stress? Metabolism, 2000, 49(2 suppl 1): 3-8 CrossRef
  37. Guichard C., Pedruzzi E., Fay M., Mkaddem S.B., Coant N., Daniel F., Ogier-Denis E. The Nox/Duox family of ROS-generating NADPH oxidases. Médecine Sciences, 2006, 22(11): 953-959 CrossRef
  38. Bolten W.W., Glade M.J., Raum S., Ritz B.W. The safety and efficacy of an enzyme combination in managing knee osteoarthritis pain in adults: a randomized, double-blind, placebo-controlled trial. Arthritis, 2015, 251521 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)