PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2022.4.718eng

UDC: 619:616.155.194.8-056.5

Acknowledgements:
Supported financially by the grant from the Russian Foundation for Basic Research (Agreement No. 20-016-00105/20 dated 03/20/2020)

 

IRON DEFICIENCY ANEMIA IN LABORATORY RATS TO BE USED AS AN EXPERIMENTAL MODEL FOR FARMED FUR-BEARING ANIMALS

N.A. Balakirev, A.A. Deltsov, S.V. Pozyabin, V.I. Maximov

Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, 23, ul. Akademika K.I. Skryabina, Moscow, 109472 Russia, e-mail Balakirev@mgavm, deltsov-81@mail.ru (✉ corresponding author), rector@mgavm, dr.maximov@gmail.com

ORCID:
Balakirev N.A. orcid.org/0000-0001-8980-263X
Pozyabin S.V. orcid.org/0000-0002-3825-6082
Deltsov A.A. orcid.org/000-002-0385-0321
Maximov V.I. orcid.org/0000-0002-5305-0218

Received March 16, 2022

Iron is an essential trace element necessary for the implementation of many processes in the body (metabolism regulation, DNA and ATP synthesis, oxygen transfer, tissue respiration, erythropoiesis, immune response). In caged fur animals, iron deficiency anemia leads to significant economic losses due to a decrease in viability and fertility, and a deterioration in the fur quality. Therefore, the study of the causes of this microelementosis, the development of pharmacological agents and techniques for its prevention and treatment remain a topical issue. In our report, we present data confirming the modeling of this pathology using an atraumatic approach, i.e., the diet we proposed, which is low in cost and simple in its ingredients. As a model object, white rats were used, which, in terms of physiological parameters, are more similar to fur-bearing animals than other laboratory animals. The aim of the study was experimental modeling of iron deficiency anemia in laboratory rats in order to extrapolate the results obtained on this model to fur animals in the future. From 4-month-old white outbred laboratory rats weighing 200 g, two groups of 10 individuals were formed. Control animals received a generally accepted balanced diet which corresponded to the consumption norms for laboratory rats and was 4 g proteins, 2 g fats, 25 g carbohydrates, and 0.5-1.0 g fiber. In the experimental group a specially developed diet was applied which was 4 times less in the iron content, but corresponded to the feeding norms in terms of the nutrients, vitamins and minerals (excluding iron). After 45 days, the rats in the experimental group developed iron deficiency anemia. As compared to the control rats, receiving a diet not deficient in iron, there was a significant (p ≤0.05) decrease in hemoglobin (by 37.5 g/l), hematocrit (by 18.35 %), the number of erythrocytes (by 3.57×1012/l), the concentration of serum iron (by 18.44 µmol/l), the average volume of erythrocyte (by 14.02 fl), the average content of hemoglobin per erythrocyte (by 6.26 pg) and per erythrocyte mass (by 73.29 g/l). The anemia of the animals was hypochromi and macrocytic. From day 17 of the experiment, shortness of breath and increased heart rate occurred, from day 24, the body temperature decreased which indicates the development of an anemic syndrome in the rats. Up to day 14, the color of the skin and mucous membranes, as well as the general condition of the rats in both groups corresponded to the norm. After day 14, anemic skin and mucous membranes of the oral cavity were observed in rats receiving an experimental diet with a limited iron content. In addition, lethargy and general depression occurred. Our results demonstrated the ability to effectively simulate iron deficiency anemia in laboratory rats, minimizing stress and eliminating physical and mental traumatization of animals, the risk of their death, and side effects. The model has been successfully applied in evaluating the effectiveness of a complex microelement preparation based on a polymaltose complex of Fe3+ hydroxide. In the future, we plan to use the model of iron deficiency anemia in rats to develop methods for the prevention and correction of this pathology in farmed fur-bearing animals.

Keywords: fur farming, iron deficiency anemia, iron preparations, anemia modeling, laboratory rats.

 

REFERENCES

  1. Naigamwalla D.Z., Webb J.A., Giger U. Iron deficiency anemia. Canadian Veterinary Journal, 2012, 53(3): 250-256.
  2. Balakirev N.A., Maksimov V.I., Staroverova I.N., Zaytsev S.Yu., Balakirev A.N. Biologicheskaya rol’ mineral’nykh veshchestv v kletochnom pushnom zverovodstve (norkovodstve) [Biological role of minerals in fur animal raised in cages (rabbit breeding)]. Moscow, 2017 (in Russ.).
  3. Meneghini I.R. Iron homeostasis, oxidative stress, and DNA damage. Free Radical Biology and Medicine, 1997, 23: 783-792 CrossRef
  4. Anderson G.J., Frazer D.M. Current understanding of iron homeostasis. The American Journal of Clinical Nutrition, 2017, 106(suppl_6): 1559S-1566S CrossRef
  5. Lavrik N.G. V sbornike: Nauchnye trudy Sibirskogo NIVI [In: Scientific works of the Siberian Research Institute NIVI]. Moscow, 1979, vol. 36: 55-57 (in Russ.).
  6. Bineev R.G. Tezisy X Vsesoyuznoy konferentsii po mikrosistemam [Abstracts of the X All-Union Conference on microsystems]. Cheboksary, 1986: 45-47 (in Russ.).
  7. Johnson G. Bioavailability and the mechanisms of intestinal absorption of iron from ferrous ascorbate and ferric polymaltose in experimental animals. Experimental Hematology, 1990, 18: 1064-1069.
  8. Umbreit J.N., Conrad M.E., Moore E.G., Latour L.F. Iron absorption and cellular transport: the mobilferrin/paraferritin paradigm. Seminars in Hematology, 1998, 35(1): 13-26.
  9. Arosio P., Elia L., Poli M. Ferritin, cellular iron storage and regulation. IUBMB Life, 2017, 69: 414-422 CrossRef
  10. Clinical biochemistry of domestic animals. J.J. Kaneko, ‎J.W. Harvey, ‎M.L. Bruss (eds.). Academic Press, 1997.
  11. Li Y.O., Diosady L.L., Wesley A.S. Iron in vitro bioavailability and iodine storage stability in double-fortified salt. Food Nutr. Bull., 2009, 30(4): 327-335 CrossRef
  12. Danielson B.G. Intravenous iron therapy efficacy and safety of iron sucrose, prevention and management of anemia in pregnancy and postpartum hemorrhage. Zurich: Schelenberg, 1998: 93-106.
  13. Nikonova Е.B. Veterinarnaya patologiya, 2005, 2: 63-66 (in Russ.).
  14. Nenortiene P. Preparation, analysis and anti-anemic action of peroral powders with ferrous oxalate. Medicina (Kaunas), 2002, 38(1): 69-76.
  15. Skrypnik K., Bogdański P., Sobieska M., Schmidt M., Suliburska J. Influence of multistrain probiotic and iron supplementation on iron status in rats. Journal of Trace Elements in Medicine and Biology, 2021, 1(68): 126849 CrossRef
  16. Culeddu G., Li Su, Cheng Y., Pereira D., Payne R.A, Powell J.J., Hughes D.A. Novel oral iron therapy for iron deficiency anaemia: how to value safety in a new drug? British Journal of Clinical Pharmacology, 2022, 88(3): 1347-1357 CrossRef
  17. Iron-containing enzymes: versatile catalysts of hydroxylation reactions in nature. S.P. de Visser, D. Kumar. The Royal Society of Chemistry Publishing, 2011.
  18. Fiddler J.L., Clarke S.L. Evaluation of candidate reference genes for quantitative real-time PCR analysis in a male rat model of dietary iron deficiency. GenesandNutrition, 2021, 16(1): 17 CrossRef
  19. Balakirev N.A., Maksimov V.I., Del’tsov A.A. Mineral’no-vitaminnoe pitanie pushnykh zverey kletochnogo soderzhaniya: monografiya [Mineral and vitamin nutrition of fur-bearing animals in cage raising: a monograph]. Moscow, 2021 (in Russ.).
  20. Ni S., Yuan Y., Kuang Y., Li X. Iron metabolism and immune regulation. Front. Immunol., 2022, 13: 816282 CrossRef
  21. Parakhnevich A.V. Vestnik novykh meditsinskikh tekhnologiy, 2012, 19(2): 189-190 (in Russ.).
  22. Camaschella C. Iron-deficiency anemia. The New England Journal of Medicine, 2015, 372(19): 1832-1843 CrossRef
  23. Gorodetskiy V.V. Zhelezodefitsitnye sostoyaniya i zhelezodefitsitnye anemii: diagnostika i lechenie [Iron deficiency conditions and iron deficiency anemia: diagnosis and treatment]. Moscow, 2004 (in Russ.).
  24. Killip S., Bennett J.M, Chambers M.D. Iron deficiency anemia. Am. Fam. Physician, 2007, 75(5): 671-678.
  25. Cottin S.C., Gambling L., Hayes H.E., Stevens V.J., McArdle H.J. Pregnancy and maternal iron deficiency stimulate hepatic CRBPII expression in rats. The Journal of Nutritional Biochemistry, 2016, 32: 55-63 CrossRef
  26. Balakirev N.A., Perel’dik D.N., Domskiy I.A. Soderzhanie, kormlenie i bolezni kletochnykh pushnykh zverey [Maintenance, feeding and diseases of fur-bearing animals in cage raising]. Moscow, 2013 (in Russ.).
  27. Staron R., Lipinski P., Lenartowicz M., Bednarz A., Gajowiak A., Smuda E., Krzeptowski W., Pieszka M., Korolonek T., Hamza I., Swinkels D., Swelm R.V., Starzyński R. Dietary hemoglobin rescues young piglets from severe iron deficiency anemia: duodenal expression profile of genes involved in heme iron absorption. PLoS ONE, 2017, 12: e0181117 CrossRef
  28. Lopez A., Cacoub P., Macdougall I.C., Peyrin-Biroulet L. Iron deficiency anaemia. Lancet, 2016, 387(10021): 907-916 CrossRef
  29. Szudzik M., Starzyński R.R., Jończy A., Mazgaj R., Lenartowicz M., Lipiński P. Iron supplementation in suckling piglets: an ostensibly easy therapy of neonatal iron deficiency anemia. Pharmaceuticals (Basel), 2018, 11(4): 128 CrossRef 
  30. Bhattarai S., Framstad T., Nielsen J.P. Iron treatment of pregnant sows in a Danish herd without iron deficiency anemia did not improve sow and piglet hematology or stillbirth rate. Acta Vet. Scand., 2019, 61: 60 CrossRef
  31. Asadi M., Toghdory A., Hatami M., Ghassemi Nejad J. Milk supplemented with organic iron improves performance, blood hematology, iron metabolism parameters, biochemical and immunological parameters in suckling Dalagh lambs. Animals (Basel), 2022, 12(4): 510 CrossRef
  32. Balakirev N.A., Maksimov V.I., Del’tsov A.A. Uchenye zapiski Kazanskoy gosudarstvennoy akademii veterinarnoy meditsiny im. N.Е. Baumana, 2021, 2: 19-25 (in Russ.).
  33. Balakirev N.A., Del’tsov A.A., Maksimov V.I. Krolikovodstvo i zverovodstvo, 2021, 3: 55-60 CrossRef (in Russ.).
  34. Havre G., Helgebostad A., Ender F. Iron resorption in fish-induced anaemia in mink. Nature, 1967, 215: 187-188 CrossRef
  35. Staroverova I.N., Maksimov V.I., Balakirev N.A., Pozyabin S.V., Zaytsev S.Yu., Del’tsov A.A. Relationship of dielectric properties of the hair cover with its morphophysiological and biochemical characteristics in farmed fur-bearing animals. Sel'skokhozyaistvennaya Biologiya [Agricultural Biology], 2021, 56(4): 809-818 CrossRef
  36. Fisher A.L., Sangkhae V., Presicce P., Chougnet C.A., Jobe A.H., Kallapur S.G., Tabbah S., Buhimschi C.S., Buhimschi I.A., Ganz T., Nemeth E. Fetal and amniotic fluid iron homeostasis in healthy and complicated murine, macaque, and human pregnancy. JCI Insight, 2020, 5(4): e135321 CrossRef
  37. Davis M.R., Hester K.K., Shawron K.M., Lucas E.A., Smith B.J., Clarke S.L. Comparisons of the iron deficient metabolic response in rats fed either an AIN-76 or AIN-93 based diet. Nutr. Metab. (Lond), 2012, 9(1): 95 CrossRef
  38. Abbaspour N., Hurrell R., Kelishadi R. Review on iron and its importance for human health. J. Res. Med. Sci., 2014, 19(2): 164-174.
  39. Asowata E.O., Olusanya O., Abaakil K., Chichger H., Srai S.K., Unwin R.J., Marks J. Diet-induced iron deficiency in rats impacts small intestinal calcium and phosphate absorption. Acta Physiologica, 2021, 232(2): e13650 CrossRef
  40. Perry A. An investigation of iron deficiency and anemia in piglets and the effect of iron status at weaning on post-weaning performance. Journal of Swine Health and Production, 2016, 24(1): 10-20.
  41. Soliman A.T., De Sanctis V., Yassin M., Soliman N. Iron deficiency anemia and glucose metabolism. Acta Biomed., 2017, 88(1): 112-118 CrossRef
  42. Pasini E., Corsetti G., Romano C., Aquilani R., Scarabelli T., Chen-Scarabelli C., Dioguardi F.S. Management of anaemia of chronic disease: beyond iron-only supplementation. Nutrients, 2021, 13(1): 237 CrossRef
  43. Karshalev E., Zhang Y., Esteban-Fernández de Ávila B., Beltrán-Gastélum M., Chen Y., Mundaca-Uribe R., Zhang F., Nguyen B., Tong Y., Fang R.H., Zhang L., Wang J. Micromotors for active delivery of minerals toward the treatment of iron deficiency anemia. Nano Lett., 2019, 19(11): 7816-7826 CrossRef
  44. Kaufman R.M., Simeon P. Iron-deficient diet: effects in rats and humans. Blood, 1966, 28(5): 726-737.
  45. Thakur M.K., Kulkarni S.S., Mohanty N., Kadam N.N., Swain N.S. Standardization and development of rat model with iron deficiency anaemia utilising commercial available iron deficient food. Biosciences Biotechnology Research Asia, 2019, 16(1): 71 CrossRef
  46. Reeves P.G. Components of the AIN-93 diets as improvements in the AIN-76A diet. The Journal of Nutrition, 1997, 127(5): 838S-841S CrossRef
  47. Reeves P.G., Nielsen F.H., Fahey G.C. Jr. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr., 1993, 123(11): 1939-1951 CrossRef
  48. Joshi T.P., Fiorotto M.L. Variation in AIN-93G/M diets across different commercial manufacturers: not all AIN-93 diets are created equal. The Journal of Nutrition, 2021, 151(11): 3271-3275 CrossRef
  49. Shchukina E.S., Kosovskiy G.Yu., Glazko V.I., Kashapova I.S., Glazko T.T. Domestic rabbit Oryctolagus cuniculus var. domestica L. as a model in the study of domestication and biomedical researches (review). Sel'skokhozyaistvennaya Biologiya [Agricultural Biology], 2020, 55(4): 643-658 (doi: 10.15389/agrobiology.2020.4.643rus">CrossRef
  50. Loenko N.N. Krolikovodstvo i zverovodstvo, 2012, 4: 17-18 (in Russ.).
  51. Cybulski W., Jarosz L., Chałabis-Mazurek A., Jakubczak A., Kostro K., Kursa K. Contents of zinc, copper, chromium and manganese in silver foxes according to their age and mineral supplementation. PolishJournalofVeterinarySciences, 2009, 12(3): 339-245.
  52. Berezina O.V. Sravnitel’naya еffektivnost’ preparatov pri zhelezodefitsitnoy anemii norok. Avtoreferat kandidatskoy dissertatsii[Comparative efficacy of drugs in iron deficiency anemia of mink. PhD Thesis]. Kazan’, 2000 (in Russ.).
  53. Ender F., Dishington I., Madsen R., Helgebostad A. Iron-deficiency anemia in mink fed raw marine fish. A five year study. Fortschr. Tierphysiol. Tierernahr., 1972, 2: 1-46.
  54. Mezhdunarodnye rekomendatsii po provedeniyu mediko-biologicheskikh issledovaniy s ispol’zovaniem zhivotnykh. Lanimalogiya, 1993, 1: 29 (in Russ.).
  55. Abrashova T.V., Gushchin Ya.A., Kovaleva M.A., Rybakova A.V., Selezneva A.I., Sokolova A.P., Khod’ko S.V. Spravochnik. Fiziologicheskie, biokhimicheskie i biometricheskie pokazateli normy еksperimental’nykh zhivotnykh [Guide. Physiological, biochemical, and biometric indicators of the norm of experimental animals]. Moscow, 2013 (in Russ.).
  56. Bityukov I.P., Lysov V.F., Safonov N.A. Praktikum po fiziologii sel’skokhozyaystvennykh zhivotnykh [Workshop on the physiology of farm animals]. Moscow, 1990 (in Russ.).
  57. Todorov I.N., Todorov G.I. Stress, starenie i ikh biokhimicheskaya korrektsiya [Stress, aging and their biochemical correction]. Moscow, 2003 (in Russ.).
  58. Kamyshnikov V.S. Klinicheskaya laboratornaya diagnostika [Clinical laboratory diagnostics]. Moscow, 2022 (in Russ.).
  59. Rydal M.P., Bhattarai S., Nielsen J.P. An experimental model for iron deficiency anemia in sows and offspring induced by blood removal during gestation. Animals (Basel), 2021, 11(10): 2848 CrossRef
  60. Krasnikova I.M. Patogeneticheski obosnovannye printsipy korrektsii еksperimental’nykh zhelezodefitsitnykh anemiy. Kandidatskaya dissertatsiya [Pathogenetic principles of correction of experimental iron deficiency anemia. PhD Thesis]. Irkutsk, 2003 (in Russ.).
  61. Krasnikova I.M., Chetverikova T.D., Kuklina L.B., Kolbaseeva O.V., Makarova N.G., Noskova L.K., Medvedeva S.A., Aleksandrova G.P., Grishchenko A.A. Sibirskiy meditsinskiy zhurnal (Irkutsk), 2002, 31(2): 26-27 (in Russ.).
  62. Zhang A.S., Canonne-Hergaux F., Gruenheid S., Gros P., Ponka P. Use of Nramp2-transfected Chinese hamster ovary cells and reticulocytes from mk/mk mice to study iron transport mechanisms. Exp. Hematol., 2008, 36(10): 1227-1235 CrossRef
  63. Hunt A., Jugan M.C. Anemia, iron deficiency, and cobalamin deficiency in cats with chronic gastrointestinal disease. Journal of Veterinary Internal Medicine, 2021, 35(1): 172-178 CrossRef
  64. Antipov A.A. Patogeneticheskie mekhanizmy razvitiya, diagnostika i profilaktika alimentarnoy zhelezodefitsitnoy anemii porosyat. Kandidatskaya dissertatsiya [Pathogenetic mechanisms of development, diagnosis and prevention of alimentary iron deficiency anemia of piglets. PhD Thesis]. Moscow, 2013 (in Russ.).
  65. Zoller H. Duodenal metal-transporter (DMT-1, Nramp-2) expression in patients with hereditary haemochromatosis. Lancet, 1999, 353: 2120 CrossRef
  66. Kang J.O. Chronic iron overload and toxicity: clinical chemistry perspective. Clinical and Laboratory Science, 2001, 14(3): 209-219.
  67. Lukina E.A., Dezhenkova A.V. Klinicheskaya onkogematologiya. Fundamental’nye issledovaniya i klinicheskaya praktika, 2015, 8(4): 355-361 (in Russ.).
  68. Salomao M.A. Pathology of hepatic iron overload. Clin. Liver Dis. (Hoboken), 2021, 17(4): 232-237 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)