doi: 10.15389/agrobiology.2018.4.769eng

UDC 639.3.03:639.32

Acknowledgements:
The authors would like to thank Yu.N. Bulyakulova (Glavrybvod Northwest branch) and D.A. Yanbukhtin (the Department of Aquatic Bioresources and Aquaculture, SPbSAU) for assistance in the work.

 

DEVELOPING THE BIOTECH METHOD FOR EFFECTIVE
REPRODUCTION OF VALUABLE FISH SPECIES POPULATIONS

P.E. Garlov, N.I. Belik, N.B. Rybalova, B.S. Bugrimov

St. Petersburg State Agrarian University, 2, Peterburgskoe sh., St. Petersburg—Pushkin, 196601 Russia, e-mail garlov@mail.ru,
biotech@spbgau, nikolaybelik@yandex.ru (✉ corresponding author), wba2009@list.ru

ORCID:
Garlov P.E. orcid.org/0000-0001-6041-3382
Belik N.I. orcid.org/0000-0001-7082-0619
Rybalova N.B. orcid.org/0000-0001-5545-6898
Bugrimov B.S. orcid.org/0000-0001-5955-9587
The authors declare no conflict of interests

Received July 2, 2017

 

Artificial reproduction of sturgeons and salmonids has shortcomings resulting in a return of commercially raised breeders. These disadvantages primarily are the catch of Atlantic salmon producers in spawning beds, which causes detriment of natural reproduction, and low survival rate of farmed juveniles in nature. In order to increase the efficiency of commercial fish reproduction, we suggest the new methods which are based on fish-specific adaptations during marine feeding period, providing the greatest population productivity and survival. Our objective was the development of a biotechnology for effective farm reproduction of salmon Salmo salar (Linne, 1758) and sturgeon Acipenser stellatus (Pallas, 1771). First, three main effects have been experimentally established for commercial fish culture in brackish seawater close to critical salinity (4-8 ‰): the highest survival rate, prolongation of high reproductive quality of breeders, and acceleration of juvenile development and growth. Physio-biochemical analysis showed the minimal losses of hemoglobin and serum protein in critical salinity medium, with maximum retention of salts in the blood and in ovarian fluids, apparently by optimizing water-salt balance of the body. The latter is achieved through optimal osmotic gradient between the inner and outer media close to critical salinity limits values. This energy-saving gradient ensures water-salt metabolism and homeostasis of the internal medium and thus the external medium (critical salinity) provides bio-stimulating effect that increases the body resistance. The maintenance of fish brood stocks in the critical range of seawater salinity (3.07-8 ‰) until puberty of producers is proposed by us as an effective method of reproducing populations of Sevruga and Baltic salmon. Then, the breeders naturally matured under specific range of the seawater salinity below a 3.06 ‰ threshold are used to obtain mature sex products. Fertilized eggs are incubated in fish-farm in river water where then larvae and juveniles grow. When recruits sign of readiness to migrate they are placed in seawater salinity 2.5-7 ‰ close to critical range and grow to viable stages. Results of comparative industrial tests of the new biotech reproduction of sturgeon and salmonids in sturgeon and salmon fish farms and in marine cages have shown the effectiveness and advantages of this method which allows preservation of high breeding quality Sevruga producers up to 100 %, and a 5-7-fold growth enhancement of young salmon. This new method can help solving the common problems of rare and endangered populations of commercial fish species restoration, which is in line with a fish farming trend of Conservation Aquaculture aimed at restoring natural environment.

Keywords: fish artificial reproduction, Acipenser stellatus, Salmo salar, Baltic population, Rutilus rutilus caspicus, fish farming, factory sturgeon and salmonids tech breeding, fish farming in brackish sea water.

 

Full article (Rus)

Full article (Eng)

 

REFERENCES

  1. Shurukhin A.S., Lukin A.A., Pedchenko A.P., Titov S.F. Trudy VNIRO, 2016, 160: 60-69. Available http://atlantniro.ru/images/stories/files/ob.sluwanij/Materiali_ODU_2017.pdf. No date (in Russ.).
  2. Garlov P.E., Rybalova N.B., Bugrimov B.S. The necessity for improvement of Atlantic salmon reproduction biotechnology. Advances in Agricultural and Biological Sciences, 2016, 2(3): 5-21 CrossRef
  3. Petrenko L.A., Malenko A.G., Gorbushina O.A., Shkonda M.V. Metodicheskie rekomendatsii po vyrashchivaniyu proizvoditelei atlanticheskogo lososya v zavodskikh usloviyakh  [Recommendations for growing Atlantic salmon producers in fish farming]. St. Petersburg, 2004 (in Russ.).
  4. Ponomarev S.V. Lososevodstvo [Salmon farming]. Moscow, 2012 (in Russ.).
  5. Garlov P.E. Trudy Zoologicheskogo instituta RAN, 2013,prilozhenie ¹ 3: 75-84 (in Russ.).  
  6. Yandovskaya N.I., Kazakov R.V., Leizerovich Kh.A. Instruktsiya po razvedeniyu atlanticheskogo lososya [Instructions for breeding Atlantic salmon].Leningrad, 1979 (in Russ.).
  7. Trenkler I.V. Rybovodstvo i rybnoe khozyaistvo, 2016, 11: 58-70 (in Russ.).  
  8. Torrissen O., Olsen R.E., Toresen R., Hemre G.I., Tacon A.G.J., Asche F., Hardy R.W., Lall S. Atlantic salmon (Salmo salar): the «super-chicken» of the sea? Rev. Fish. Sci., 2011, 19(3): 257-278 CrossRef
  9. Pravdin I.F. Rukovodstvo po izucheniyu ryb [Guide to the study of fish]. Moscow, 1966 (in Russ.).
  10. Golovina N.A., Avdeeva E.V., Evdokimova E.B. Praktikum po ikhtiopatologii [Workshop on ichthyopathology]. Moscow, 2012 (in Russ.).  
  11. Khlebovich V.V. Kriticheskaya solenost' biologicheskikh protsessov [Critical salinity of biological processes]. Leningrad, 1974 (in Russ.).
  12. Khlebovich V.V. Trudy zoologicheskogo instituta RAN, 2013, prilozhenie ¹ 3: 3-6 (in Russ.).
  13. Garlov P.E., Bugrimov B.S., Rybalova N.B., Turetskii V.I., Torganov S.V. Sposob vosproizvodstva populyatsii sevryugi i baltiiskogo lososya. Patent na izobretenie RF ¹ 2582347. FGBOU VO SPbGAU (RU). Opubl. 27.04.2016. Byul. ¹ 12 [Method of reproduction of populations of stellate sturgeon and Baltic salmon. Patent RU ¹ 2582347. Publ. 27.04.2016. Bul. ¹ 12] (in Russ.).
  14. Zohar Y., Muñoz-Cueto J.A., Elizur A., Kah O. Neuroendocrinology of reproduction in teleost fish. Gen. Comp. Endocr., 2010, 165(3): 438-455 CrossRef
  15. Garlov P.E. Plasticity of nonapeptidergic neurosecretory cells in fish hypothalamus and neurohypophysis. Int. Rev. Cytol., 2005, 245: 123-170 CrossRef
  16. Elliott J.M., Elliott J.A. Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: predicting the effects of climate change. J. Fish Biol., 2010, 77(8): 1793-817 CrossRef
  17. Boeuf G.J, Payan P. How should salinity influence fish growth? Comp. Biochem. Physiol., 2001, 130(4): 411-423 CrossRef
  18. Deane E.E., Woo N.Y.S. Modulation of fish growth hormone levels by salinity, temperature, pollutants and aquaculture related stress: a review. Rev. Fish Biol. Fisher., 2009, 19(1): 97-120 CrossRef
  19. Stefansson S.O., Bjürnsson B.Th., Ebbesson L.O.E., McCormic S.D. Smoltification. In: Fish larval physiology. R.N. Finn, B.G. Kapor (eds.). Science Publishers, Inc. Enfield (NH) and IBN Publishing Co. Pvt. Ltd, New Delhi, 2008, Chapter 20: 639-681.
  20. Hasler A.D., Scholz A.T. Olfactory imprinting and homing in salmon. Investigations into the mechanism of the imprinting process. Berlin, Heidelbeg, NY, Tokyo, Springer Verlag, 1983 CrossRef
  21. Stephen D., McCormick S.D., Hansen L.P., Quinn T.P, Saunders R.L. Movement, migration, and smolting of Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci., 55(S1), 1998: 77-92 CrossRef
  22. Boiko N.E. Nexachloran and oil contaminations alter memorisation of odors in sturgeon, Acipenser güldenstädtii Brandt. J. Environ. Prot. Ecol., 2003, 4(1): 134-140.
  23. 65 Dams removed to restore rivers in 2012. In: Water online. March, 12, 2013. Available http://www.wateronline.com/doc/dams-removed-to-restore-rivers-0001?atc~c=771+s. No date.
  24. Cowx I.G., Nunn A.D., Harvey J.P., Noble R.A.A. Guidelines for stocking of fish within designated natural heritage sites. Scottish Natural Heritage Commissioned Report No. 513, 2012. Available http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.738.3232&rep=
    rep1&type=pdf. No date.
  25. Palmé A., Wennerström L., Guban P., Ryman L., Laikre L. Compromising Baltic salmon genetic diversity: conservation genetic risks associated with compensatory releases of salmon in the Baltic Sea. Havs- och vattenmyndigheten rapport 2012. Havs- och vattenmyndigheten, Göteborg, 2012. Available https://www.havochvatten.se/download/18.13780b7613b461ffa9e1a83/
    1355996777952/rapport-2012-18-compromising-baltic-salmon-english.pdf. No date.
  26. Torrissen O., Jones S., Asche F., Guttormsen A., Skilbrei O.T., Nilsen F., Horsberg T.E., Jackson D. Salmon lice — impact on wild salmonids and salmon aquaculture. J. Fish Dis., 2013, 36(3): 171-194 CrossRef
  27. Hutchings J.A. Unintentional selection, unanticipated insights: introductions, stocking, and the evolutionary ecology of fishes. J. Fish Biol., 2014, 85(6): 1907-1926 CrossRef
  28. Beamesderfer R., Anders P., Young S. Technical basis for the Kootenai Sturgeon Conservation Aquaculture Program. Appendix A. In: Kootenai River Native Fish Conservation Aquaculture Program Step 2 Submittal. Kootenai Tribe of Idaho, 2012. Available http://www.resto-ringthekootenai.org/resources/Step-2-AquaCulture-Doc/Appendix-A.pdf. No date.
  29. Culling M., Freamo H., Patterson K., Paul R. Berg P.R., Lien S., Boulding E.G. Signatures of selection on growth, shape, parr marks, and SNPs among seven Canadian Atlantic salmon (Salmo salar) populations. The Open Evolution Journal, 2013, 7(1): 1-16 CrossRef
  30. Thorstad E.B., Fleming I.A., McGinnity P., Soto D., Wennevik V., Whoriskey F. Incidence and impacts of escaped farmed Atlantic salmon Salmo salar in nature. NINA Special Report 36. World Wildlife Fund, Inc., 2008. Available http://www.fao.org/3/a-aj272e.pdf. No date.
  31. Lorenzen K. Understanding and managing enhancements: why fisheries scientists should care. J. Fish Biol., 2014, 85(6): 1807-1829 CrossRef 

 

back