PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2022.3.403eng

UDC: 631/635:631.58:551.5:57.087

 

90 YEARS OF AGROPHYSICAL INSTITUTE AS A HISTORY OF PRIORITY ACHIEVEMENTS IN RUSSIAN AND WORLD AGROPHYSICAL SCIENCE

I.B. Uskov, V.P. Yakushev, Yu.V. Chesnokov

Agrophysical Research Institute, 14, Grazhdanskii prosp., St. Petersburg, 195220 Russia, e-mail i.b.uskov@gmail.com, vyakushev@agrophys.ru, yuv_chesnokov@agrophys.ru (✉ corresponding author)

ORCID:
Uskov I.B. orcid.org/0000-0003-2990-978х
Chesnokov Yu.V. orcid.org/0000-0002-1134-0292
Yakushev V.P. orcid.org/0000-0002-0013-0484

Received February 1, 2022

 

The article described the main stages of the formation of the Agrophysical Research Institute over 90 years of its existence. Since its foundation in 1932 as part of the Lenin All-Russian Academy of Agricultural Sciences (VASKHNIL) at the initiative of Abram F. Ioffe and Nikolai I. Vavilov, the Agrophysical Institute focuses on establishing mechanisms of genotype—abiotic environment interaction in order to control the production process in agricultural plants both in the field and under controlled growing conditions. Accepting the ideas of N.I. Vavilov, A.F. Ioffe put forward the concept that the agrophysical science, relying on the achievements of physics, mathematics and biology, will ensure the transition from descriptive agronomy to agronomy based on measurements and calculations of factors of productivity, growth and development of plants and crops. This allows agricultural practitioners to manage crop formation and productivity. It is emphasized that the main objectives still are understanding the fundamentals of the functioning of agroecological systems and the development of scientific foundations, methods and means to research physical, physicochemical, biological and biophysical processes in soil—plant—active layer of the atmosphere. The research studies also aim at simulation mathematical models of these processes. The development of theoretical foundations, methods and tools for managing the productivity of agroecological systems for effective and sustainable agriculture and crop production in natural and regulated conditions are relevant. The development and creation of technical means of obtaining information about the state of plants and their habitats also are in focus. Nowadays, the Agrophysical Institute, as a leading research institute, implements scientific and technical programs and projects based on agronomic physics and related sciences, e.g., agroecology, soil science, genetics, biophysics and plant physiology, agroclimatology, computer science and computational mathematics, cybernetics and instrumentation. The Agrophysical Institute successfully develops new areas of research focused on the methods for effective management of the growth, development and productivity of crops through physical, physicochemical and other abiotic factors affecting the habitat of plants in order to modernize and intensify agriculture and the entire agro-industrial complex.

Keywords: agrophysics, development history, soil physics, soil science, precision farming, plant growth and development factors, crop productivity management.

 

REFERENCES

  1. Vavilov N.I. Zakon gomologicheskikh ryadov v nasledstvennoy izmenchivosti [The law of homologous series in hereditary variability].  Moscow-Leningrad, 1935 (in Russ.).
  2. Vavilov N.I. Nauchnye osnovy selektsii pshenitsy [Scientific basis of wheat breeding]. Moscow-Leningrad, 1935 (in Russ.).
  3. Vavilov N.I. Opyt agroеkologicheskogo obozreniya vazhneyshikh polevykh kul’tur [Experience of agroecological review of the most important field crops].  Moscow-Leningrad, 1957 (in Russ.).
  4. Ioffe A.F. Fizika i sel’skoe khozyaystvo [Physics and agriculture]. Moscow-Leningrad, 1955 (in Russ.).
  5. Ioffe A.F. Sovetskaya agrofizika [Soviet agrophysics]. Moscow, 1957 (in Russ.).
  6. Ioffe A.F., Revut I.B. Fizika na sluzhbe sel’skogo khozyaystva [Physics for agriculture]. Moscow, 1959 (in Russ.).
  7. Batygin N.F. Ontogenez vysshikh rasteniy [Ontogeny of higher plants]. Moscow, 1986 (in Russ.).
  8. Yakushev V.P. Na puti k tochnomu zemledeliyu [Towards precision farming].  St. Petersburg, 2002 (in Russ.).
  9. Kolyasev F.E., Vershinin P.V. Metod iskusstvennogo obrazovaniya struktury pochvy [Method of artificial formation of soil structure]. Moscow-Leningrad, 1935 (in Russ.).
  10. Kolyasev F.E., Mel’nikova M.K. Pochvovedenie, 1949, 3: 177-193 (in Russ.).
  11. Vershinin P.V., Konstantinova V.P. Fiziko-khimicheskie osnovy iskusstvennoy struktury pochv [Physical and chemical foundations of artificial soil structure]. Moscow, 1935 (in Russ.).
  12. Vershinin P.V. Pochvennaya struktura i usloviya ee formirovaniya [Soil structure and conditions for its formation].  Moscow-Leningrad, 1958 (in Russ.).
  13. Revut I.B. Fizika v zemledelii [Physics in agriculture]. Moscow-Leningrad, 1960 (in Russ.).
  14. Revut I.B. Kak pravil’no obrabatyvat’ pochvu [How to properly till the soil]. Moscow, 1966 (in Russ.).
  15. Revut I.B. Fizika pochv [Soil physics]. Leningrad, 1964 (in Russ.).
  16. Nerpin S.V., Chudnovskiy A.F. Fizika pochv [Soil physics]. Moscow, 1967 (in Russ.).
  17. Nerpin S.V., Chudnovskiy A.F. Еnergo- i massoobmen v sisteme rastenie-pochva-vozdukh [Energy and mass transfer in the plant-soil-air system]. Leningrad, 1975 (in Russ.).
  18. Globus A.M. Еksperimental’naya gidrofizika pochv [Experimental soil hydrophysics]. Leningrad, 1969 (in Russ.).
  19. Globus A.M. Fizika neizotermicheskogo vnutripochvennogo vlagoobmena [Physics of non-isothermal intrasoil moisture exchange]. Leningrad, 1983 (in Russ.).
  20. Vershinin P.V., Mel’nikova M.K., Michurin B.N., Moshkov B.S., Poyasov N.P., Chudnovskiy A.F. Osnovy agrofiziki [Fundamentals of agrophysics]. Moscow, 1959 (in Russ.).
  21. Mel’nikova M.K., Kovenya C.B. Pochvovedenie, 1971, 10: 42-49 (in Russ.).
  22. Kokotov Yu.A., Pasechnik V.A. Ravnovesie i kinetika ionnogo obmena [Equilibrium and kinetics of ion exchange]. Leningrad, 1970 (in Russ.).
  23. Kokotov Yu.A. Ionity i ionnyy obmen [Ionites and ion exchange]. Leningrad, 1980 (in Russ.).
  24. Kokotov Yu.A., Zolotarev P.P., El’kin G.Е. Teoreticheskie osnovy ionnogo obmena: slozhnye ionoobmennye sistemy [Theoretical foundations of ion exchange: complex ion exchange systems]. Leningrad, 1986 (in Russ.).
  25. Batygin N.F. Ispol’zovanie ioniziruyushchey radiatsii pri upravlenii zhiznedeyatel’nost’yu rasteniy. Avtoreferat doktorskoi dissertatsii[The use of ionizing radiation in the management of plant life. DSc Thesis]. Leningrad, 1968 (in Russ.).
  26. Chudnovskiy A.F. Teploobmen v dispersnykh sredakh [Heat transfer in dispersed media]. Moscow, 1954 (in Russ.).
  27. Chudnovskiy A.F., Shlimovich B.M. Poluprovodnikovye pribory v sel’skom khozyaystve [Semiconductor devices in agriculture]. Leningrad, 1970 (in Russ.).
  28. Chudnovskiy A.F. Teplofizika pochv [Soil thermophysics]. Moscow, 1976 (in Russ.).
  29. Kurtener D.A., Uskov I.B. Klimaticheskie faktory i teplovoy rezhim v otkrytom i zashchishchennom grunte [Climatic factors and thermal conditions in open ground and in greenhouses]. Leningrad, 1982 (in Russ.).
  30. Kurtener D.A., Uskov I.B. Upravlenie mikroklimatom sel’skokhozyaystvennykh poley [Microclimate management of agricultural fields]. Leningrad, 1988 (in Russ.).
  31. Maksimov H.A. Fiziologicheskie osnovy zasukhoustoychivosti rasteniy [Physiological basis of plant drought resistance]. Leningrad, 1926 (in Russ.).
  32. Moshkov B.S. Vyrashchivanie rasteniy na iskusstvennom osveshchenii [Growing plants in artificial light]. Moscow-Leningrad, 1966 (in Russ.).
  33. Moshkov B.S. Fotoperiodizm rasteniy [Plant photoperiodism]. Moscow, 1961 (in Russ.).
  34. Moshkov B.S. Aktinoritmizm rasteniy [Plant actinorhythmicity]. Moscow, 1987 (in Russ.).
  35. Izbrannye trudy Evgeniya Ivanovicha Ermakova /G.G. Panova (sost.) [Selected works of Evgeny Ivanovich Ermakov].  St. Petersburg, 2009 (in Russ.).
  36. Chudnovskiy A.F., Karmanov V.G., Savin V.N., Ryabova E.P. Kibernetika v sel’skom khozyaystve [Cybernetics in agriculture].  Leningrad, 1965 (in Russ.).
  37. Poluеktov R.A., Pykh Yu.A., Shvytov I.A. Dinamicheskie modeli еkologicheskikh sistem [Dynamic models of ecological systems]. Leningrad, 1980 (in Russ.).
  38. Bondarenko N.F., Zhukovskiy E.E., Mushkin I.G., Nerpin S.V., Poluеktov R.A., Uskov I.B. Modelirovanie produktivnosti agroеkosistem [Agroecosystem productivity modeling].  Leningrad, 1982 (in Russ.).
  39. Agrofizika ot A.F. Ioffe do nashikh dney /I.B. Uskov (red.) [Agrophysics from A.F. Ioffe to the present day. I.B. Uskov (ed.)].  St. Petersburg, 2002 (in Russ.).
  40. Globus A.M. Agrofizicheskiy institut 75 let na puti k tochnomu zemledeliyu [Agrophysical Institute: 75 years on the way to precision farming].  St. Petersburg, 2007 (in Russ.).
  41. Davidson J.L., Philip J.R. Light and pasture growth. In: Climatology and microclimatology. Proc. Canberra Symp. 1956. UNESCO, Paris, 1958: 181-187.
  42. De Wit C.T., Goudriaan J., van Laar H.H., Penning de Vries F.W.T., Rabbinge R., van Keulen H., Louwerse W., Sibma L., de Jonge C. Simulation of assimilation, respiration and transpiration of crops. Wageningen, 1978.
  43. Rubin J. Theoretical analysis of two-dimensional, transient flow of water in unsaturated and partly unsaturated soils. Soil Science Society of America Journal, 1968, 32(5): 607-615 CrossRef
  44. Ansorge H. Optimierte Düngungsempfehlung durch elektronische Datenverarbeitung. Berlin, 1976.
  45. Smith M.R. A model for computer control of crop growth. Transactions of the American Society of Agricultural Engineers, 1971, 14(3): 0475-0479 CrossRef
  46. Yakushev V.V. Tochnoe zemledelie: teoriya i praktika [Precision farming: theory and practice]. St. Petersburg, 2016 (in Russ.).
  47. Mikhaylenko I.M. Teoreticheskie osnovy i tekhnicheskaya realizatsiya upravleniya agrotekhnologiyami [Theoretical foundations and technical implementation of agricultural technology management]. St. Petersburg, 2017 (in Russ.).
  48. Balashov E., Pellegrini S., Bazzoffi P. Effects of winter wheat roots on recovery of bulk density, penetration resistance and water-stable aggregation of sandy loam Eutric Cambisol and clayey loam Vertic Cambisol after compaction. Zemdirbyste-Agriculture, 2021, 108(2): 99-108 CrossRef
  49. Balashov E., Mukhina I., Rizhiya E. Differences in water vapor adsorption-desorption of non aged and 3-year aged biochar in sandy Spodosols. Acta Horticulturae et Regiotecturae, 2019, 22(2): 56-60 CrossRef>
  50. Balashov E., Pellegrini S., Bazzoffi P. Effects of repeated passages of a wheeled tractor on some physical properties of clayey loam soil. Acta Horticulturae et Regiotecturae, 2021, 24(1): 9-13 CrossRef
  51. Balashov E., Buchkina N., Šimanský V., Horák J. Effects of slow and fast pyrolysis biochar on N2O emissions and water availability of two soils with high water-filled pore space. Journal of Hydrology and Hydromechanics, 2021, 69(4): 467-474 CrossRef
  52. Juriga M., Aydın E., Horák J., Chlpík J., Rizhiya E.Y., Buchkina N.P., Balashov E.V., Šimanský V. The importance of initial application and reapplication of biochar in the context of soil structure improvement. Journal of Hydrology and Hydromechanics, 2021, 69(1): 87-97 CrossRef
  53. Horák J., Igaz D., Aydin E., Šimanský V., Buchkina N., Balashov E. Changes in direct CO2 and N2O emissions from a loam Haplic Luvisol under conventional moldboard and reduced tillage during growing season and post-harvest period of red clover. Journal of Hydrology and Hydromechanics, 2020, 68(3): 271-278 CrossRef
  54. Horák J., Balashov E., Šimanský V., Igaz D., Buchkina N., Aydin E., Bárek V. Drgoňová K. Effects of conventional moldboard and reduced tillage on seasonal variations of direct CO2 and N2O emissions from a loam Haplic Luvisol. Biologia, 2019, 74(7): 767-782 CrossRef
  55. Buchkina N., Rizhiya E., Balashov E. N2O emission from a loamy sand Spodosol as related to soil fertility and N-fertilizer application for barley and cabbage. Archives of Agronomy and Soil Science, 2012, 58(sup1): S141-S146 CrossRef
  56. Rizhiya E.Y., Horak J., Šimanský V., Buchkina N.P. Nitrogen enriched biochar-compost mixture as a soil amendment to the Haplic Luvisol: effect on greenhouse gas emission. Biologia, 2020, 75(6): 873-884 CrossRef
  57. Balashov E., Buchkina N., Šimanský V., Horák J. Effects of slow and fast pyrolysis biochar on N2O emissions and water availability of two soils with high water-filled pore space. Journal of Hydrology and Hydromechanics, 2021, 69(4): 467-474 CrossRef
  58. Sushko S.V., Ananyeva N.D., Ivashchenko K.V. Kudeyarov V.N. Soil CO2 emission, microbial biomass, and basal respiration of chernozems under different land uses. Eurasian Soil Science, 2019, 52(9): 1091-1100 CrossRef
  59. Efimov A.E., Sitdikova Yu.R., Dobrokhotov A.V., Kozyreva L.V. Monitoring evapotranspiration in an agricultural field and determination of irrigation rates and dates by automated mobile field agrometeorological complex. Water Resources, 2018, 45(1): 133-137 CrossRef
  60. Ivanov A.I., Ivanova Zh.A. Methodology of the Agrophysical Institute’s modern system of field experiments. In: Exploring and optimizing agricultural landscapes. L. Mueller, V.G. Sychev, N.M. Dronin, F. Eulenstein (eds.). Springer, Cham, 2021: 529-546 CrossRef
  61. Ivanov A.I., Ivanova Zh.A., Konashekov A.A. Environmental landscape conditions of the Russian Northwest, the fertility of sod-podsolic soils and the efficiency of precise fertilizer systems. In: Exploring and optimizing agricultural landscapes. L. Mueller, V.G. Sychev, N.M. Dronin, F. Eulenstein (eds). Springer, Cham, 2021: 349-372 CrossRef
  62. Ivanov A.I., Konashenkov A.A., Ivanova, Zh. Spatial heterogeneity of lithogenic mosaic of sod-podzolic soils of chudskaya lowland and efficiency of precision fertilization system. In: Smart innovation, systems and technologies, vol. 245 /A. Ronzhin, K. Berns, A. Kostyaev (eds.). Springer, Singapore, 2022, 245: 53-68 CrossRef
  63. Wiese A., Schulte M., Theuvsen L., Steinmann H.-H. Interactions of glyphosate use with farm characteristics and cropping patterns in Central Europe. Pesticide Managment Science, 2018, 74(5): 1155-1165 CrossRef
  64. Allwood J.W., Martinez-Martin P., Xu Y., Cowan A., Pont S., Griffiths I., Sungurtas J., Clarke S., Goodacre R., Marshall A., Stewart D., Howarth C. Assessing the impact of nitrogen supplementation in oats across multiple growth locations and years with targeted phenotyping and high-resolution metabolite profiling approaches. Food Chemistry, 2021, 355: 129585 CrossRef
  65. Litvinovich A.V., Pavlova O.Yu., Lavrishchev A.V., Bure V., Saljnikov E. Magnesium leaching processes from sod-podzolic sandy loam reclaimed byincreasing doses of finely ground dolomite. Zemdirbyste-Agriculture, 2021, 108(2): 109-116 CrossRef
  66. Chesnokov Yu.V., Yanko Yu.G. Melioratsiya i vodnoe khozyaystvo, 2019, 3: 18-21 (in Russ.).
  67. Yanko Yu.G., Petrushin A.F. Metodicheskie rekomendatsii po obsledovaniyu osushitel’nykh meliorativnykh sistem distantsionnymi metodami. Metodicheskie rekomendatsii [Methodical recommendations for the survey of drainage reclamation systems by remote methods. Guidelines].  St. Petersburg, 2019 (in Russ.).
  68. Gulyuk G.G., Yanko G.G., Shtykov V.I., Chernyak M.B., Petrushin A.F. Rukovodstvo po melioratsii poley [Field reclamation guide].  St. Petersburg, 2020 (in Russ.).
  69. Yanko Yu.G., Petrushin A.F., Mitrofanov E.P., Startsev A.S., Kuzenek E.G. Agrofizika, 2020, 4: 55-59 CrossRef (in Russ.).
  70. PanovaG.G., KanashE.V., SemenovK.N., CharykovN.A., KhomyakovYu.V., AnikinaL.M., ArtemyevaA.M., KornyukhinD.L., VertebnyiV.E., SinyavinaN.G., UdalovaO.R., Kulenova N.A., BlokhinaS.Yu. Fullerenederivativesinfluenceproductionprocess, growthandresistancetooxidativestressinbarleyandwheatplants. Sel’skokhozyaistvennayaBiologiya [AgriculturalBiology], 2018, 53(1): 38-49 CrossRef
  71. Panova G.G., Udalova O.R., Kanash E.V., Galushko A.S., Kochetov A.A., Priyatkin N.S., Arkhipov M.V., Chernousov I.N. Fundamentals of physical modeling of “ideal” agroecosystems. TechnicalPhysics, 2020, 65: 1563-1569 CrossRef
  72. Artemyeva A.M., Sinyavina N.G., Panova G.G., Chesnokov Yu.V. Biological features of Brassica rapa L. vegetable leafy crops when growing in an intensive light culture. Sel'skokhozyaistvennaya Biologiya [Agricultural Biology], 2021, 56(1): 103-120 CrossRef
  73. Kochetov A.A., Sinyavina N.G. Strategy for creating highly productive forms of small radish adapted for cultivation under artificial light conditions. Russian Agricultural Science, 2019, 45: 142-146 CrossRef
  74. Kuleshova T.E., Chernousov I.N., Udalova O.R., Khomyakov Y.V., Aleksandrov A.V., Seredin I.S., Shcheglov S.A., Gall N.R., Panova G.G. Influence of lighting spectral characteristics on the lettuce leaf optical properties. Journal of Physics: Conference Series, 2019, 1400(3): 033025 CrossRef
  75. Chesnokov Yu.V., Kanash E.V., Mirskaya G.V., Kocherina N.V., Rusakov D.V., Lohwasser U., Börner A. QTL mapping of diffuse reflectance indices of leaves in hexaploid bread wheat (Triticum aestivum L.). Russian Journal of Plant Physiology, 2019, 66(1): 77-86 CrossRef
  76. Musaev F., Priyatkin N., Potrakhov N., Beletskiy S., Chesnokov Y. Assessment of Brassicaceae seeds quality by X-ray analysis. Horticulturae, 2022, 8(1): 29 CrossRef
  77. Arkhipov M.V., Priyatkin N.S., Gusakova L.P., Potrakhov N.N., Gryaznov A.Y., Bessonov V.B., Obodovskii A.V., Staroverov N.E. X-ray computer methods for studying the structural integrity of seeds and their importance in modern seed science. Technical Physics, 2019, 64(4): 582-592 CrossRef
  78. Chesnokov Yu.V. Biochemical markers in genetic investigations of cultivated crops: the pros and cons (review). Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2019, 54(5): 863-874 CrossRef
  79. Bityutskii N.P., Yakkonen K.L., Lukina K.A., Semenov K.N., Panova G.G. Fullerenol can ameliorate iron deficiency in cucumber grown hydroponically. Journal of Plant Growth Regulation, 2021, 40: 1017-1031 CrossRef
  80. Kuleshova T.E., Gall’ N.R., Galushko A.S., Panova G.G. Electrogenesis in plant-microbial fuel cells in parallel and series connections. Technical Physics, 2021, 66(3): 496-504 CrossRef
  81. Moustafa K. Ships as future floating farm systems? Plant Signal Behavior, 2018, 13(4): e1237330 CrossRef
  82. Didenko N.I., Davydenko V.A., Magaril E.R., Romashkina G.F., Skripnuk D.F., Kulik S.V. The nutrition and health status of residents of the northern regions of Russia: outlook of vertical agricultural farms. International Journal of Environmental Research of Public Health, 2021, 18(2): 414 CrossRef
  83. Salgotra R.K., Stewart C.N. Jr. Functional markers for precision plant breeding. International Journal of Molecular Science, 2020, 21(13): 4792 CrossRef
  84. Kim H.-H., Wheeler R.M., Sager J.C., Yorio N.C., Goins G.D. Light-emitting diodes as an illumination source for plants: a review of research at Kennedy Space Center. Habitation (Elmsford), 2005, 10(2): 71-78 CrossRef
  85. Uskov I.B., Yakushev V.P., Chesnokov Yu.V. Actual physical, agronomic, genetical and breeding aspects in agrobiological management (towards 85 Anniversary of Agrophysical Research Institute, Russia). Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2017, 52(3): 429-436 CrossRef
  86. Li Z., Paul R., Ba Tis T., Saville A.C., Hansel J.C., Yu T., Ristaino J.B., Wei Q. Non-invasive plant disease diagnostics enabled by smartphone-based fingerprinting of leaf volatiles. Nature Plants, 2019, 5(8): 856-866 CrossRef
  87. Yaashikaa P.R., Senthil Kumar P., Varjani S., Saravanan A. Rhizoremediation of Cu(II) ions from contaminated soil using plant growth promoting bacteria: an outlook on pyrolysis conditions on plant residues for methylene orange dye biosorption. Bioengineered, 2020, 11(1): 175-187 CrossRef
  88. Li J.-H., Fan L.-F., Zhao D.-J., Zhou Q., Yao J.-P., Wang Z.-Y., Huang L. Plant electrical signals: A multidisciplinary challenge. Journal of Plant Physiology, 2021, 261: 153418 CrossRef
  89. Shafi U., Mumtaz R., García-Nieto J., Hassan S.A., Zaidi S.A.R., Iqbal N. Precision agriculture techniques and practices: from considerations to applications. Sensors, 2019, 19(17): 3796 CrossRef
  90. Gao D., Sun Q., Hu B., Zhang S. A framework for agricultural pest and disease monitoring based on Internet-of-Things and unmanned aerial vehicles. Sensors, 2020, 20(5): 1487 CrossRef
  91. Tunca E., Köksal E.S., Çetin S., Ekiz N.M., Balde H. Yield and leaf area index estimations for sunflower plants using unmanned aerial vehicle images. Environmental Monitoring Assessment, 2018, 190(11): 682 CrossRef
  92. Yakushev V.P., Yakushev V.V., Badenko V.L., Matveenko D.A., Chesnokov Yu.V. Productivity based on mass calculations of the agroecosystem simulation model in geoinformation environment (review). Sel'skokhozyaistvennaya Biologiya [Agricultural Biology], 2020, 55(3): 451-467 CrossRef
  93. Maes W.H., Steppe K. Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture. Trends Plant Science, 2019, 24(2): 152-164 CrossRef
  94. Irmulatov B.R., Abdullaev K.K., Komarov A.A., Yakushev V.V. Prospects for precision management of wheat productivity in the conditions of Northern Kazakhstan. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2021, 56(1): 92-102 CrossRef
  95. Komarov A.A., Zakharyan Yu.G., Irmulatov B.R. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, 18(3): 182-191 CrossRef (in Russ.).
  96. Kostková M., Hlavinka P., Pohanková E., Kersebaum K.C., Nendel C., Gobin A., Olesen J.E., Ferrise R., Dibari C., Takáč J., Topaj A., Medvedev S., Hoffmann M.P., Stella T., Balek J., Ruiz-Ramos M.,  Rodríguez A., Hoogenboom G., Shelia V., Ventrella D., Giglio L., Sharif B., Oztürk I., Rötter R.P., Balkovič J., Skalský R., Moriondo M., Thaler S., Žalud Z., Trnka M. Performance of 13 crop simulation models and their ensemble for simulating four field crops in Central Europe. The Journal of Agricultural Science, 2021, 159(1-2): 69-89 CrossRef
  97. Martinez M.A., Priyatkin N.S., van Duijn B. Electrophotography in seed analysis: basic concepts and methodology. Seed Testing International, 2018, 156: 53-56.
  98. Kolesnikov L.E., Popova Е.V., Novikova I.I., Priyatkin N.S., Arkhipov M.V., Kolesnikova Yu.R., Potrakhov N.N., van Duijn B., Gusarenko A.S. Multifunctional biologics which combine microbial anti-fungal strains with chitosan improve soft wheat (Triticum aestivum L.) yield and grain quality. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2019, 54(5): 1024-1040 CrossRef
  99. Chesnokov Yu.V., Mirskaya G.V., Kanash E.V., Kocherina N.V., Rusakov D.V., Lohwasser U., Börner A. QTL identification and mapping in soft spring wheat (Triticum aestivum L.) under controlled agroecological and biological testing area conditions with and without nitrogen fertilizer. RussianJournalofPlantPhysiology, 2018, 65(1): 123-135 CrossRef
  100. Babben S., Schliephake E., Janitza P., Berner T., Keilwagen J., Koch M., Arana-Ceballos F.A., Templer S.E., Chesnokov Yu., Pshenichnikova T., Schondelmaier J., Börner A., Pillen K., Ordon F., Perovic D. Association genetics studies on frost tolerance in wheat (Triticum aestivum L.) reveal new highly conserved amino acid substitutions in CBF-A3, CBF-A15, VRN3 and PPD1 genes. BMC Genomics, 2018, 19: 409 CrossRef
  101. Arif M.A.R., Shokat S., Plieske J., Ganal M., Lohwasser U., Chesnokov Yu.V., Kocherina N.V., Kulwal P., Kumar N., McGuire P.E., Sorrells M.E., Qualset C.O., Börner A. A SNP-based genetic dissection of versatile traits in bread wheat (Triticumaestivum L.). The Plant Journal, 2021, 108(4): 960-976 CrossRef
  102. Soleimani B., Lehnert H., Babben S., Keilwagen J., Koch M., Arana-Ceballos F.A., Chesnokov Y., Pshenichnikova T., Schondelmaier J., Ordon F., Börner A., Perovic D. Genome wide association study of frost tolerance in wheat. Scientific Reports, 2022, 12(1): 5275 CrossRef
  103. Pishchik V., Mirskaya G., Chizhevskaya E., Chebotar V., Chakrabarty D. Nickel stress-tolerance in plant-bacterial associations. PeerJournal, 2021, 9: e12230 CrossRef
  104. Dubey S., Shri M., Gupta A., Rani V., Chakrabarty D. Toxicity and detoxification of heavy metals during plant growth and metabolism. Environmental Chemistry Letters, 2018, 16: 1169-1192 CrossRef
  105. Nedjimi B. Phytoremediation: a sustainable environmental technology for heavy metals decontamination. SN Applied Sciences, 2021, 3: 286 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)