doi: 10.15389/agrobiology.2022.3.566eng

UDC: 579.6:632.9



G. Michail1, A. Reizopoulou2, I. Vagelas3

1Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou St., Volos 384 46 Magnesia, Greece, e-mail (✉ corresponding author);
2Volos Natural History Museum, Mikrassiaton 1, Volos, 383 33, Greece, e-mail;
3Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou St., N. Ionia, 384 46 Magnesia, Greece, e-mail

Received January 19, 2021

Members of the genus Serratia are of great research interest because they are almost ubiquitous and exhibit emulsifying, surfactant, antifouling, antitumor and antimicrobial properties. Water is a natural habitat for several species of serrations. This paper reports on the first isolation of S. proteamaculans from bats guano. The aim of the present study is to evaluate the biocontrol activity of Serratia strains isolated from bats guano pile from a subterrestrial cave of Thessaly region (Aeolia), Greece. Serratia strains initial designated as strains Sl2, Sl4 and were able to ferment glucose (D-glucose), other carbohydrates (i.e. D-mannitol, D-mannose), and saccharose/sucrose as a source of carbon and sugars. Both strains have an optimal growth at 28 °С whereas strain Sl4 were able to grow and at 4 °С. Bacteria strains Sl2 and Sl4 were classified within the Serratia liquefaciens group by the VITEK® 2 system (bioMerieux SA, France) and were accurately identified at the species level by MALDI-TOF MS (bioMerieux SA, France). MALDI-TOF MS classified Sl2 strain as S. proteamaculans and Sl4 strain as S. liquefaciens. To the best of our knowledge, this paper is the first to report the detection and classification in detail of the S. proteamaculans in bat guano. Both Serratia strains produced prodigiosin at 28 °С with optimum prodigiosin production recorded 72 h after incubation. Further the antifungal activity of S. liquefaciens and S. proteamaculans strains were investigated in vitro against plant pathogenic fungi (Fusarium oxysporum, Alternaria alternata, Botrytis cinerea, Sclerotinia sclerotiorum and Rhizoctonia solani). This is the first report that S. liquefaciens and S. proteamaculans strains isolated from bat guano were able to produce freely diffusible compounds with fungistatic activity in vitro. Studies on the interaction between pathogen and bacteria confirmed the biocontrol efficacy of both Serratia strains (S. liquefaciens and S. proteamaculans).

Keywords: Serratia spp., bat guano, subterranean aquatic environment, secondary metabolites, biocontrol.



  1. García-Fraile P., Chudíčková M., Benada O., Pikula J., Kolařík M. Serratia myotis sp. nov. and Serratia vespertilionis sp. nov., isolated from bats hibernating in caves. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(Pt_1): 90-94 CrossRef
  2. Grimont F., Grimont P.A.D. The genus Serratia. In: The prokaryotes: a handbook on the biology of bacteria, 3rd edn. M. Dworkin, S. Falkow, E. Rosenberg, K.H. Schleifer, E. Stackebrandt (eds.). New York, Springer, 2006: 219-244 CrossRef
  3. Grimont F., Grimont P.A.D. Genus XXXIV. Serratia Bizio 1823, 288AL. In: Bergey's manual of systematic bacteriology, 2nd edn., vol. 2, part B. D.J. Brenner, N.R. Krieg, J.T. Staley (eds.), Springer Science and Business Media, New York, NY, 2005: 799-811.
  4. Mühldorfer K., Speck S., Kurth A., Lesnik R., Freuling C., Müller T., Kramer‐Schadt S., Wibbelt G. Diseases and causes of death in European bats: dynamics in disease susceptibility and infection rates. PLoS ONE, 2011, 6: e29773 CrossRef
  5. Stock I., Grueger T., Wiedemann B. Natural antibiotic susceptibility of strains of Serratia marcescens and the S. liquefaciens complex: S. liquefaciens sensu stricto, S. proteamaculans and S. grimesii. International Journal of Antimicrobial Agents, 2003, 22(1): 35-47 CrossRef
  6. Skerman V.B.D., McGowan V., Sneath, P.H.A. Approved lists of bacterial names. International Journal of Systematic and Evolutionary Microbiology, 1980, 30(1): 225-420 CrossRef
  7. Bollet C., Grimont P., Gainnier M., Geissler A., Sainty J.M., De Micco P. Fatal pneumonia due to Serratia proteamaculans subsp. quinovora. Journal of Clinical Microbiology, 1993, 31(2): 444-445 CrossRef
  8. Mahlen S.D. Serratia infections: from military experiments to current practice. Clinical Microbiology Reviews, 2011, 24(4): 755-791 CrossRef
  9. Ajithkumar B., Ajithkumar V.P., Iriye R., Doi Y., Sakai T. Spore-forming Serratia marcescens subsp. sakuensis subsp. nov., isolated from a domestic wastewater treatment tank. International Journal of Systematic and Evolutionary Microbiology, 2003, 53(1): 253-258 CrossRef
  10. Su C., Xiang Z., Liu Y., Zhao X., Sun Y., Li Z., Li L., Chang F., Chen T., Wen X., Zhou Y., Zhao F. Analysis of the genomic sequences and metabolites of Serratia surfactantfaciens sp. nov. YD25T that simultaneously produces prodigiosin and serrawettin W2. BMC Genomics, 2016, 17: 865 CrossRef
  11. Clements T., Ndlovu T., Khan W. Broad-spectrum antimicrobial activity of secondary metabolites produced by Serratia marcescens strains. Microbiological Research, 2019, 229: 126329 CrossRef
  12. Harris A.K.P., Williamson N.R., Slater H., Cox A., Abbasi S., Foulds I., Simonsen H.T., Leeper F.J., Salmond G.P.C. The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and strain-dependent genome context variation. Microbiology, 2004, 150(11): 3547-3560 CrossRef
  13. Hahn M. The rising threat of fungicide resistance in plant pathogenic fungi: Botrytis as a case study. Journal of Chemical Biology, 2014, 7(4): 133-141 CrossRef
  14. Rodel J., Mellmann A., Stein C., Alexi M., Kipp F., Edel B., Dawczynski K., Brandt C., Seidel L., Pfister W., Löffler B., Straube E. Use of MALDI-TOF mass spectrometry to detect nosocomial outbreaks of Serratia marcescens and Citrobacter freundii. European Journal of Clinical Microbiology & Infectious Diseases, 2019, 38: 581-591 CrossRef
  15. Moehario LH., Tjoa E., Putranata H., Joon S., Edbert D., Robertus T. Performance of TDR-300B and VITEK®2 for the identification of Pseudomonas aeruginosa in comparison with VITEK®-MS. Journal of International Medical Research,2021, 49(2): 30006052198989 CrossRef
  16. Strejcek Μ., Smrhova Τ., Junkova P., UhlikFront O. Whole-cell MALDI-TOF MS versus 16S rRNA gene analysis for identification and dereplication of recurrent bacterial isolates. Frontiers in Microbiology, 2018, 9: 1294 CrossRef
  17. Crowley E., Bird P., Fisher K., Goetz K., Boyle M., Benzinger M.J., Jr, Juenger M., Agin J., Goins D., Johnson R., Collaborators. Evaluation of the VITEK 2 Gram-Negative (GN) Microbial Identification Test Card: collaborative study. Journal of AOAC International, 2012, 95(3): 778-785 CrossRef
  18. Vagelas I., Sugar I.R. Potential use of olive mill wastewater to control plant pathogens and post harvest diseases. Carpathian Journal of Food Science & Technology, 2020, 12(4): 140-145 CrossRef
  19. Vagelas I.K., Giurgiulescu L. Bioactivity of olive oil mill wastewater against grey mould disease. Carpathian Journal of Food Science & Technology, 2019, 11(4): 161-164 CrossRef
  20. Vagelas I.K. Efficacy of Pseudomonas oryzihabitans as a biocontrol agent of root pathogens. Thesis (PhD). University of Reading, UK, 2002.
  21. Vagelas I., Kalorizou H., Papachatzis A., Botu M. Bioactivity of olive oil mill wastewater against plant pathogens and post-harvest diseases. Biotechnology & Biotechnological Equipment, 2009, 23(2): 1217-1219 CrossRef
  22. Agarry O.O., Akinyosoye F.A., Adetuyi F.C. Antagonistic properties of microogranisms associated with cassava (Manihot esculenta, Crantz) products. African Journal of Microbiology, 2005, 4(7): 627-632 CrossRef
  23. Georgiakakis P., Papadatou E. Chiroptera. In: Deliverable 7, C-Phase of Study 7: “Monitoring and evaluation of conservation status mammal species of Community interest in Greece”. G. Papamichael, T. Arapis, K. Petkidi, I. Fytou, V. Chatirvasanis. Ministry of Environment, Energy and Climatic Change, Athens, Scholars Partnership and Consultancy Firms “ARAPIS THOMAS EYAGGELOY, GEOANALYSI S.A. and PAPACHARISI ALEXANDRA THEODORA”, Athens. 2015 (in Greek">CrossRef
  24. Posteraro B., De Carolis E., Vella A., Sanguinetti M. MALDI-TOF mass spectrometry in the clinical mycology laboratory: identification of fungi and beyond. Expert Review of Proteomics, 2013, 10(2): 151-164 CrossRef
  25. Caroll K., Patel R. Systems for identification of bacteria and fungi. In: Manual of clinical microbiology, 11th edition. J.H. Jorgensen, K.C. Carroll, G. Funke, M.A. Pfaller, M.L. Landry, S.S. Richter, D.W. Warnock (eds.). ASM Press N.W., Washington, 2015: 29-43 CrossRef
  26. Nomura F. Proteome-based bacterial identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS): A revolutionary shift in clinical diagnostic microbiology. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2015, 1854(6): 528-537 CrossRef
  27. Ford B.A., Burham C.A. Optimization of routine identification of clinically relevant gram-negative bacteria by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry and the Bruker Biotyper. Journal of Clinical Microbiology, 2013, 51(5): 1412-1420 CrossRef
  28. Hotta Y., Sato J., Sato H., Hosoda A., Tamura H. Classification of the genus Bacillus based on MALDI-TOF MS analysis of ribosomal proteins coded in S10 and spc operons. Journal of Agricultural and Food Chemistry, 2011, 59(10): 5222-5230 CrossRef
  29. Seng P., Drancourt M., Couriet F., La Scola B., Fournier P-E., Rolain J.M., Raoult D. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clinical Infectious Diseases, 2009, 49(4): 543-551 CrossRef
  30. Cherkaoui A., Hibbs J., Emonet S., Tangomo M., Girard M., Francois P., Schrenzel J. Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry methods with conventional phenotypic identification for routine identification of bacteria to the species level. Journal of Clinical Microbiology, 2010, 48(4): 1169-1175 CrossRef
  31. Marko D.C., Saffeert R.T., Cunningham S.A., Hyman J., Walsh J., Arbefeville S., Howard W., Pruessner J., Safwat N., Cockerill F.R., Bossier A.D., Patel R., Richter S.S. Evaluation of the Bruker Biotyper and Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry systems for identification of nonfermenting gram-negative bacilli isolated from cultures from cystic fibrosis patients. Journal of Clinical Microbiology, 2012, 50(6): 2034-2039 CrossRef
  32. Mancini N., De Carolis E., Infurmari L., Vella A., Clementi N., Vaccaro L., Ruggeri A., Posteraro B., Burioni R., Clementi M., Sanguinetti M. Comparative evaluation of the Bruker Biotyper and Vitek MS matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry systems for identification of yeasts of medical importance. Journal of Clinical Microbiology, 2013, 51(7): 2453-2457 CrossRef
  33. Mather C.A., Rivera S.F., Butler-Wu S.M. Comparison of the Bruker Biotyper and Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry systems for identification of mycobacteria using simplified extraction protocols. Journal of Clinical Microbiology, 2014, 52(1): 130-138 CrossRef
  34. Alby K., Gilligan P., Miller M. Comparison of matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry platforms for the identification of gram-negative rods from patients with cystic fibrosis. Journal of Clinical Microbiology, 2013, 51(11): 3852-3854 CrossRef
  35. Kärpänoja P., Haruju I., Rantakokko-Jalava K., Haanperä M., Sarkkinen H. Evaluation of two matrix-assisted laser desorption ionization-time of flight mass spectrometry systems for identification of viridans group streptococci. European Journal of Clinical Microbiology & Infectious Diseases, 2014, 33: 779-788 CrossRef
  36. Sanguinetti M., Posteraro B. Mass spectrometry applications in microbiology beyond microbe identification: progress and potential. Expert Review of Proteomics, 2016, 13(10): 965-977 CrossRef
  37. Ramesh Babu N.G., Simrah Fathima K.A, Nandhini V., Nandhini V. Extraction of prodigiosin from Serratia marcescens and its application as an antibacterial spray. IP International Journal of Medical Microbiology and Tropical Diseases, 2019, 5(4): 207-209 CrossRef
  38. Batah R., Loucif L., Olaitan A.O., Boutefnouchet N., Allag H., Rolain, J.M. Outbreak of Serratia marcescens coproducing ArmA and CTX-M-15 mediated high levels of resistance to aminoglycoside and extended-spectrum beta-lactamases, Algeria. Microbial Drug Resistance, 2015, 21(4): 470-476 CrossRef
  39. Claydon M.A., Davey S.N., Edwards-Jones V., Gordon D.B. The rapid identification of intact microorganisms using mass spectrometry. Nature Biotechnology, 1996, 14: 1584-1586 CrossRef
  40. Holland R.D., Wilkes J.G., Rafii F., Sutherland J.B., Persons C.C., Voorhees K.J., Lay J.O., Jr. Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 1996, 10(10): 1227-1232 CrossRef
  41. Dieckmann R., Graeber I., Kaesler I., Szewzyk U., von Döhren H. Rapid screening and dereplication of bacterial isolates from marine sponges of the Sula Ridge by Intact-Cell-MALDI-TOF mass spectrometry (ICM-MS). Applied Microbiology and Biotechnology, 2005, 67: 539-548 CrossRef
  42. Ghyselinck J., van Hoorde K., Hoste B., Heylen K., De Vos P. Evaluation of MALDI-TOF MS as a tool for high-throughput dereplication. Journal of Microbiological Methods, 2011, 86(3): 327-336 CrossRef
  43. Spitaels F., Wieme A.D., Vandamme P. MALDI-TOF MS as a novel tool for dereplication and characterization of microbiota in bacterial diversity studies. In: Applications of mass spectrometry in microbiology: from strain characterization to rapid screening for antibiotic resistance. P. Demirev, T.R. Sandrin (eds.). Springer, Cham, 2016: 235-256 (10.1007/978-3-319-26070-9_9">CrossRef
  44. Mellmann A., Cloud J., Maier T., Keckevoet U., Ramminger I., Iwen P., Dunn J., Hall G., Wilson D., LaSala P., Kostrzewa M., Harmsen D. Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria. Journal of Clinical Microbiology, 2008, 46(6): 1946-1954 CrossRef
  45. Uhlík O., Strejček M., Junková P., Šanda M., Hroudová M., Vlček C., Mackova M., Macek T. Matrix-assisted laser desorption ionization (MALDI)-time of flight mass spectrometry- and MALDI Biotyper-based identification of cultured biphenyl-metabolizing bacteria from contaminated horseradish rhizosphere soil. Applied and Environmental Microbiology, 2011, 77(19): 6858-6866 CrossRef
  46. Koubek J., Uhlík O., Ječná K., Junková P., Vrkoslavová J., Lipov J., Kurzawova V., Macek T., Mackova M. Whole-cell MALDI-TOF: rapid screening method in environmental microbiology. International Biodeterioration & Biodegradation, 2012, 69: 82-86 CrossRef
  47. Wieser A., Schneider L., Jung J., Schubert S. MALDI-TOF MS in microbiological diagnostics — identification of microorganisms and beyond (mini review). Applied Microbiology and Biotechnology, 2012, 93: 965-974 CrossRef
  48. Seng P., Abat C., Rolain J.M., Colson P., Lagier J.-C., Gouriet F., Fournier P.E., Drancourt M., La Scola B., Raoult D. Identification of rare pathogenic bacteria in a clinical microbiology laboratory: impact of MALDI-TOF mass spectrometry. Journal of Clinical Microbiology, 2013, 51(7): 2182-2194 CrossRef
  49. Fenselau C., Demirev P.A. Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrometry Reviews, 2001, 20(4): 157-171 CrossRef
  50. Lay J.O. Jr. MALDI-TOF mass spectrometry of bacteria. Mass Spectrometry Reviews, 2001, 20(4): 172-194 CrossRef
  51. Newman M.M., Kloepper L.N., Duncan M., McInroy J.A., Kloepper J.W. Variation in bat guano bacterial community composition with depth. Frontiers in Microbiology, 2018, 9: 914 CrossRef
  52. Veikkolainen V., Vesterinen E.J., Lilley T.M., Pulliainen A.T. Bats as reservoir hosts of human bacterial pathogen, Bartonella mayotimonensis. Emerging Infectious Diseases, 2014, 20(6): 960-967 CrossRef
  53. Wolkers-Rooijackers J., Rebmann K., Bosch T., Hazeleger W. Fecal bacterial communities in insectivorous bats from the Netherlands and their role as a possible vector for foodborne diseases. Acta Chiropterologica, 2019, 20: 475 CrossRef
  54. Banskar S., Bhute S.S., Suryavanshi M.V., Punekar S., Shouche Y.S. Microbiome analysis reveals the abundance of bacterial pathogens in Rousettus leschenaultii guano. Scientific Reports, 2016, 6: 36948 CrossRef
  55. Selvin J., Lanong S., Syiem D., De Mandal S., Kayang H., Kumar N.S., Kiran G.S. Culture-dependent and metagenomic analysis of lesser horseshoe bats’ gut microbiome revealing unique bacterial diversity and signatures of potential human pathogens. Microbial Pathogenesis, 2019, 137: 103675 CrossRef
  56. AL-Ghanem M.M. Serratia A novel source of secondary metabolites. Advances in Biotechnology & Microbiology, 2018, 11(3): 555814 CrossRef
  57. Bhadra B., Ro P., Chakraborty R. Serratia ureilytica sp. nov., a novel urea-utilizing species. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(5): 2155-2158 CrossRef
  58. Frankowski J., Lorito M., Scala F., Schmid R., Berg G., Bahl H. Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Archives of Microbiology, 2001, 176(6): 421-426 CrossRef
  59. Czajkowski R., Wolf J.M. Draft genome sequence of the biocontrol strain Serratia plymuthica A30, isolated from rotting potato tuber tissue. Journal of Bacteriology, 2012, 194: 6999-7000 CrossRef
  60. Petersen L.M., Tisa L.S. Friend or foe? A review of the mechanisms that drive Serratia towards diverse lifestyles. Canadian Journal of Microbiology, 2013, 59(9): 627-640 CrossRef
  61. Kimyon Ö., Das T., Ibugo A.I., Kutty S.K., Ho K.K., Tebben J., Kumar N., Manefield M. Serratia secondary metabolite prodigiosin inhibits Pseudomonas aeruginosa biofilm development by producing reactive oxygen species that damage biological molecules. Frontiers in Microbiology, 2016, 7: 972 CrossRef
  62. Stankovic N., Senerovic L., Ilic-Tomic T., Vasiljevic B., Nikodinovic-Runic J. Properties and applications of undecylprodigiosin and other bacterial prodigiosins. Applied Microbiology and Biotechnology, 2014, 98(9): 3841-3858 CrossRef







Full article PDF (Rus)