PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2021.3.487eng

UDC: 633.11:581.13:631.559:539.2

 

A NANOSILICON PREPARATION IS SUPERIOR TO A BIOLOGICAL PREPARATION AND A CHEMICAL PREPARATION IN ACTIVITY TOWARDS PHOTOSYNTHETIC PRODUCTIVITY AND YIELD PARAMETERS OF SPRING WHEAT

A.A. Khoroshilov, N.E. Pavlovskaya , D.B. Borodin, I.V. Yakovleva

Parakhin Orel State Agrarian University, 69, ul. Generala Rodina, Orel, 302019 Russia, e-mail khoroshilov@nano-si.ru, ninel.pavlovsckaya@yandex.ru (✉ corresponding author), bioogau@mail.ru, as290186@yandex.ru

ORCID:
Khoroshilov A.A. orcid.org/0000-0001-5525-9560
Borodin D.B. orcid.org/0000-0002-3634-5882
Pavlovskaya N.E. orcid.org/0000-0001-7246-5059
Yakovleva I.V. orcid.org/0000-0002-6070-7110

Received July 13, 2020

Wheat is widely used as a food, technical and feed crop. Increased wheat yields can be achieved by mitigating biotic and abiotic stresses using a variety of technologies that include trace elements and growth regulators. Nanosilicon microfertilizer (NanoSilicon LLC, Russia) is an environmentally friendly product containing 50 % of pure colloidal-sized crystalline silicon. This work, for the first time, confirms the positive effect of the Nanosilicon preparation on photosynthetic potential and the net productivity of photosynthesis, the synthesis of chlorophyll, carotenoids and sugars and shows an advantage of Nanosilicon over the pesticide Vincite and an experimental biological product. Under the influence of Nanosilicon, the component structure of the spring wheat yield changed, namely, the number of productive stems, ears and 1000 grain weight increased. Our goal was to examine the effect of Nanosilicon preparation on spring wheat photosynthetic productivity and yield components in the conditions of the Orel region and to compare the effect of Nanosilicon with that of a chemical pesticide and a bioactive preparation. The experiment design included four treatments of spring wheat (Triticum aestivum L.) cv. Darya seeds (Federal Research Center for Grain-Legumes and Cereals, Streletskoe village, Oryol region, 2016-2019). The seeds were soaked for 2 hours before sowing in water, in chemical pesticide Vinzit (two controls), in a novel biological product based on buckwheat bioflavonoids, and in Nanosilicon concentrate (tests). During vegetation, the control and test treatments were twice applied to the growing plants at tillering and at stem extension phases. The energy of seed germination and germination rate were determined, the development of seed infections was assessed. The phenological phases (three leaves, tillering, stem extension, earing, flowering, milk ripeness, and full ripeness of the grain) were recorded. Photosynthetic potential (PP), photosynthetic productivity and net photosynthetic productivity (NPP) were evaluated, leaf area and the pigment content were measured. It was found that pre-sowing treatment of spring wheat seeds with Nanosilicon contributed to an 18.5 % increase in germination energy and a 5.5 % increase in germination rate as compared to the control treatments. Due to the Nanosilicon application, the plants were taller, resulting in more leaves until the end of the growing season, which indicates a longer leaf life compared to controls. The leaf area was 20.0 % larger at the earing-flowering period compared to the control (water), that was, 14.6 % larger for the biopreparation and 8.3 % larger for the pesticide Vincit. Photosynthetic capacity for control (water), Vincit, Nanosilicon, and the biopreparation was 633360, 686022, 1560384, and 1104894 m2ʺday/ha, respectively. NPP value for Nanosilicon was greater as compared to the controls, by 60-80 % for water and by 22.2 % for Vincit. The amounts of chlorophylls and carotenoids in plants were the greatest at the earing—flowering phase. Under the influence of Nanosilicon and the biological preparation, the synthesis of pigments increased by 20-30 % compared to the controls. Nanosilicon contributed to an increase in the synthesis of sugars in the process of photosynthesis to a lesser extent than the biological product, which can be explained by the difference in the distribution of assimilates and a large accumulation of proteins. The advantages of the Nanosilicon over the bioactive preparation in the number of grains and the 1000-seed weight were minor. Under the effect of Nanosilicon, the number of productive stems increased by 33.7 %, the number of ears by 38.7 %, the ear weight by 26.8 %, the number of grains per ear by 19.2 ear, and the 1000-grain weight by 19.7 % as compared to the control. These indicators for the bioactive preparation were slightly lower than for Nanosilicon, but higher than in control treatments. For four years, the grain yield under the influence of Vincite was approximately 8 % higher compared to the control (water) and from 9 to 16.6 % higher due to Nanosilicon and the bioactive preparation.

Keywords: spring wheat, Nanosilicon, biological product, germination energy, germination rate, net photosynthetic productivity, yield components.

 

REFERENCES

  1. Food and Agriculture Organization Corporate Statistical Database. Available: http://www.fao.org/faostat/ru/#data/QC. No date.
  2. Khoury S.K., Bjorkman A.D., Dempewolf H., Ramirez-Villegas J., Guarino L., Jarvis A., Rieseberg L.H., Struik P.C. Increasing homogeneity in global food supplies and the implications for food security. Proceedings of the National Academy of Sciences, 2014, 111(11): 4001-4006 CrossRef
  3. Johnson V.A., Briggle L.W., Axtel J.D., Bauman L.F., Leng E.R., Johnston T.H. Grain crops. In: Protein resources and technology. M. Milner, N.S. Scrimshaw, D.I.C. Wang (eds.). AVI Publishin, Westport, CT, USA, 1978: 239-255.
  4. Giraldo P., Benavente E., Manzano-Agugliaro F., Gimenez E. Worldwide research trends on wheat and barley: a bibliometric comparative analysis. Agronomy, 2019, 9(7): 352 CrossRef
  5. Singh R.P., Singh P.K., Rutkoski J., Hodson D.P., He X., Jorgensen L.N., Hovmøller M.S., Huerta-Espino J. Disease impact on wheat yield potential and prospects of genetic control. Annual Review of Phytopathology, 2016, 54: 303-322 CrossRef
  6. Hawkesford M.J., Araus J.-L., Park R., Calderini D., Miralles D., Shen T., Zhang J., Parry M.A.J. Prospects of doubling global wheat yields. Food and Energy Security, 2013, 2(1): 34-48 CrossRef
  7. Slafer G.A., Savin R., Sadras V.O. Coarse and fine regulation of wheat yield components in response to genotype and environment. Field Crops Research, 2014, 157: 71-83 CrossRef
  8. Trnka M., Rötter R.P., Ruiz-Ramos M., Kersebaum K.C., Olesen J.E., Žalud Z., Semenov M.A. Adverse weather conditions for European wheat production will become more frequent with climate change. Nature Climate Change,2014, 4(7): 637-643 CrossRef
  9. Wang J., Vanga S.K., Saxena R., Orsat V., Raghavan V. Effect of climate change on the yield of cereal crops: a review. Climate, 2018, 6(2): 41 CrossRef
  10. Yavaş İ., Ünay A. The role of silicon under biotic and abiotic stress conditions. Türkiye Tarımsal Araştırmalar Dergisi, 2017, 4(2): 204-209 CrossRef
  11. Cooke J., Leishman M.R. Consistent alleviation of abiotic stress with silicon addition: a meta-analysis. Functional Ecology, 2016, 30(8): 1340-1357 CrossRef
  12. Mir R.A., Bhat K.A., Shah A.A., Zargar S.M. Role of silicon in abiotic stress tolerance of plants. In: Improving abiotic stress tolerance in plants. CRC Press, 2020 CrossRef
  13. Frew A., Weston L.A., Reynolds O.L., Gurr G.M. The role of silicon in plant biology: a paradigm shift in research approach. Annals of Botany, 2018, 121(7): 1265-1273 CrossRef
  14. Abdel-Haliem M.E.F., Hegazy H.S., Hassan N.S., Naguib D.M. Effect of silica ions and nano silica on rice plants under salinity stress. Ecological Engineering, 2017, 99: 282-289 CrossRef
  15. Luyckx M., Hausman J.-F., Lutts S., Guerriero G. Silicon and plants: current knowledge and technological perspectives. Front. Plant Sci., 2017, 8: 411 CrossRef
  16. Liang Y., Nikolic M., Bélanger R., Gong H., Song A. Silicon uptake and transport in plants: physiological and molecular aspects. In: Silicon in agriculture. Y. Liang, M. Nicolic, R. Bélanger, H. Gong, A. Song (eds). Springer, Dordrecht, 2015: 69-82 CrossRef
  17. Kozlov A.V., Kulikova A.Kh., Yashin E.A. Vestnik Mininskogo universiteta, 2015, 2: 23-31 (in Russ.).
  18. Al-Aghabary K., Zhu Z., Shi Q. Influence of silicon supply on chlorophyll content, chlorophyll fluorescence and anti-oxidative enzyme activities in tomato plants under salt stress. Journal of Plant Nutrition,2005, 27(12): 2101-2115 CrossRef
  19. Molero G., Joynson R., Pinera-Chavez F.J., Gardiner L., Rivera-Amado C., Hall A., Reynolds M.P. Elucidating the genetic basis of biomass accumulation and radiation use efficiency in spring wheat and its role in yield potential. Plant Biotechnology Journal, 2019, 17(7): 1276-1288 CrossRef
  20. Richards R.A. Selectable traits to increase crop photosynthesis and yield of grain crops. Journal of Experimental Botany, 2000, 51(Suppl. 1): 447-458 CrossRef
  21. Curtis T., Halford N.G. Food security: the challenge of increasing wheat yield and the importance of not compromising food safety. Annals of Applied Biology,2014, 164(3): 354-372 CrossRef
  22. Kosachev I.A., Chernyshkov V.N. Vestnik Altaiskogo gosudarstvennogo agrarnogo universiteta, 2018, 9(167): 23-28 (in Russ.).
  23. Semina S.A., Ostroborodova N.I. Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii, posvyashchennoi 80-letiyu d.s.-kh.n., prof. Sozyrko Kh.D. «Aktual'nye voprosy primeneniya udobrenii v sel'skom khozyaistve» [Proc. Int. Conf. «Topical issues of the use of fertilizers in agriculture»]. Vladikavkaz, 2017: 63-65 (in Russ.).
  24. Serkova O.P., Zhandarova S.V. MaterialyXIVMezhdunarodnoinauchno-prakticheskoikonferentsii «Agrarnayanaukasel'skomukhozyaistvu» [Proc. Int. Conf. «Agricultural science for agriculture prcatice»]. Barnaul, 2019, kn. 2: 246-247 (in Russ.).
  25. Mnatsakanyan A.A., Chuvarleeva G.V. Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii molodykh uchenykh i spetsialistov «Fundamental'nye osnovy upravleniya selektsionnym protsessom sozdaniya novykh genotipov rastenii s vysokimi khozyaistvenno tsennymi priznakami produktivnosti, ustoichivosti k bio- i abiostressoram» [Proc. Int. Conf. «Foundations for breeding new plant genotypes with high economically valuable traits of productivity, resistance to bio- and abiostressors»]. Orel, 2017: 135-139 (in Russ.).
  26. Chuvarleeva G.V., Mnatsakanyan A.A. Materialy nauchno-prakticheskoi konferentsii, posvyashchennoi 110-letiyu so dnya rozhdeniya akademika V.I. Shempelya [Proc. Conf. dedicated to the 110th anniversary of the birth of Academician V.I. Shempel]. Zhodino, 2018: 114-116 (in Russ.).
  27. Pavlovskaya N.E., Gor'kova I.V., Gagarina I.N., Borodin D.B., Borzenkova G.A. Sredstvo dlya predposevnoi obrabotki semyan gorokha. RU 2463759 C1 MPK A01C 1/06, A01C 1/08. Federal'noe gosudarstvennoe obrazovatel'noe uchrezhdenie vysshego professional'nogo obrazovaniya "Orlovskii gosudarstvennyi agrarnyi universitet" (RF). № 2011117691/13. Zayavl. 03.05.2011. Opubl. 20.10.2012. Byul. № 29 [Means for pre-sowing treatment of pea seeds. RU 2463759 C1 MPK A01C 1/06, A01C 1/08. Federal State Educational Institution of Higher Professional Education "Oryol State Agrarian University" (RF). № 2011117691/13. Appl. 03.05.2011. Publ. 20.10.2012. Bull. № 1 №29] (in Russ.).
  28. Nichiporovich A.A., Strogonova L.E., Chmora S.N., Vlasova M.P. Fotosinteticheskaya deyatel'nost' rastenii v posevakh (Metody i zadachi ucheta v svyazi s formirovaniem urozhaev) [Photosynthetic activity of plants in crops: methods and tasks with regard to crop formation)]. Moscow, 1961 (in Russ.).
  29. Moiseev V.P., Reshetskii N.P. Fiziologiya i biokhimiya rastenii: metodicheskie ukazaniya [Plant physiology and biochemistry: guidelines]. Gorki, 2009 (in Russ.).
  30. Gavrilenko V.F., Ladygina M.E., Khandobina L.M. Bol'shoi praktikum po fiziologii rastenii /Pod redaktsiei B.A. Rubina [Workshop on plant physiology. B.A. Rubin (ed.)]. Moscow, 1975 (in Russ.).
  31. Dospekhov B.A. Metodika polevogo opyta (s osnovami statisticheskoi obrabotki rezul'tatov issledovanii) [Methods of field trials]. Moscow, 1985 (in Russ.).
  32. Westfall C.S., Muehler A.M., Jez J.M. Enzyme action in the regulation of plant hormone responses. Journal of Biological Chemistry, 2013, 288(27): 19304-19311 CrossRef
  33. Zhang Y., Xu S., Ji F., Hu Y., Gu Z., Xu B. Plant cell wall hydrolysis process reveals structure—activity relationships. Plant Methods, 2020, 16: 147 CrossRef
  34. Liu P., Yin L., Wang S., Zhang M., Deng X., Zhang S., Tanaka K. Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated salt-induced osmotic stress in Sorghum bicolor L. Environmental and Experimental Botany, 2015, 111: 42-51 CrossRef
  35. Andrianova Yu.E., Tarchevskii I.A. Khlorofill i produktivnost' rastenii [Chlorophyll and plant productivity]. Moscow, 2000 (in Russ.).
  36. Ort D., Melandri B.A., Yunge V., Uitmarsh Dzh. Fotosintez. Tom 2 /Pod redaktsiei D.R. Govindzhi [Photosynthesis. Volume 2]. Moscow, 1987 (in Russ.).
  37. Heyneke E., Fernie A.R. Metabolic regulation of photosynthesis. Biochem. Soc. Trans., 2018, 46(2): 321-328 CrossRef
  38. Timm S. The impact of photorespiration on plant primary metabolism through metabolic and redox regulation. Biochem. Soc. Trans., 2020, 48(6): 2495-2504 CrossRef
  39. Andralojc P.J., Carmo-Silva E., Degen G.E., Parry M.A.J. Increasing metabolic potential: C-fixation. Essays Biochem., 2018, 62(1): 109-118 CrossRef
  40. Mokronosov A.T. V sbornike: Fiziologiya rastenii na sluzhbe prodovol'stvennoi programmy SSSR [In: Plant physiology for the USSR food program. Part 2]. Moscow, 1988, ch. 2: 3-18 (in Russ.).
  41. Nikitin S.N. Uspekhi sovremennogo estestvoznaniya, 2017, 1: 33-38 (in Russ.).
  42. Nichiporovich A.A. V sbornike: Fotoregulyatsiya metabolizma i morfogeneza rastenii [In: Photoregulation of plant metabolism and morphogenesis]. Moscow, 1975: 228-244 (in Russ.).
  43. Sinegovskaya V.T., Abrosimova T.E. Vestnik Rossiiskoi akademii sel'skokhozyaistvennykh nauk, 2006, 5: 43-45 (in Russ.).
  44. Timoshenko E.V. MNIZH Mezhdunarodnyi nauchno-issledovatel'skii zhurnal, 2015, 41(10-3): 68-70 CrossRef (in Russ.).
  45. Isaychev V., Andreev N., Bogapova M. The influence of growth regulators on the productive capacity of spring wheat. BIO Web Conf. Int. Scientific-Practical Conf. Agriculture and Food Security: Technology, Innovation, Markets, Human Resources. Ulyanovsk, 2020, 17: 5 CrossRef
  46. Waqas M.A., Khan I., Akhter M.J., Noor M.A., Ashraf U. Exogenous application of plant growth regulators (PGRs) induces chilling tolerance in short-duration hybrid maize. Environmental Science and Pollution Research, 2017, 24: 11459-11471 CrossRef
  47. Kaya C., Sonmez O., Aydemir S., Ashraf M., Dikilitas M. Exogenous application of mannitol and thiourea regulates plant growth and oxidative stress responses in salt-stressed maize (Zea mays L.). Journal of Plant Interactions, 2013, 8(3): 234-241 CrossRef
  48. Li X., Schmid B., Wang F., Paine C.E.T. Net assimilation rate determines the growth rates of 14 species of subtropical forest trees. PLoS ONE, 2016, 11(3): e0150644 CrossRef
  49. Evans J.R. Improving photosynthesis. Plant Physiology, 2013, 162(4): 1780-1793 CrossRef
  50. Long S.P., Zhu X.-G., Naidu S.L., Ort D.R. Can improvement in photosynthesis increase crop yields? Plant, Cell & Environment, 2006, 29(3): 315-330 CrossRef
  51. Condon A.G., Farquhar G.D., Richards R.A. Genotypic variation in carbon isotope discrimination and transpiration efficiency in wheat: leaf gas-exchange and whole plant studies. Australian Journal of Plant Physiology, 1990, 17(1): 9-22 CrossRef
  52. Rebetzke G.J., Rattey A.R., Farquhar G.D., Richards R.A., Condon A.G. Genomic regions for canopy temperature and their genetic association with stomatal conductance and grain yield in wheat. Functional Plant Biology, 2013, 40(1): 14-33 CrossRef
  53. Nichiporovich A.A., Asrorov K.A. V knige: Fotosintez i ispol'zovanie solnechnoi energii [In: Photosynthesis and the use of solar energy]. Leningrad, 1971: 5-18 (in Russ.).
  54. Myśliwa-Kurdziel B., Latowski D., Strzałka K. Chapter Three. Chlorophylls c — Occurrence, synthesis, properties, photosynthetic and evolutionary significance. Advances in Botanical Research, 2019, 90: 91-119 CrossRef
  55. Golovko T.K., Tabalenkova G.N., Dymova O.V. Botanicheskii zhurnal, 2007, 92: 1732-1742 (in Russ.).
  56. Hashimoto H., Uragami C., Cogdell R.J. Carotenoids and photosynthesis. In: Carotenoids in nature. Subcellular biochemistry, vol. 79. C. Stange (eds.). Springer, Cham, 2016: 111-139 CrossRef
  57. Ivanov L.A., Ivanova L.A., Ronzhina D.A., Yudina P.K. Fiziologiya rastenii, 2013, 60(6): 856-864 CrossRef (in Russ.).
  58. Bae E.J., Lee K.S., Huh M.R., Lim C.S. Silicon significantly alleviates the growth inhibitory effects of NaCl in salt-sensitive «Perfection» and «Midnight» Kentucky bluegrass (Poa pratensis L). Hortic. Environ. Biotechnol., 2012, 53: 477-483 CrossRef
  59. Lee S.K., Sohn E.Y., Hamayun M., Yoon J.Y., Lee I.J. Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agroforest Syst., 2010, 80: 333-340 CrossRef
  60. Al-Aghabary K., Zhu Z., Shi Q. Influence of silicon supply on chlorophyll content, chlorophyll fluorescence and anti-oxidative enzyme activities in tomato plants under salt stress. Journal of Plant Nutrition, 2005, 27(12): 2101-2115 CrossRef
  61. Romero-Aranda M.R., Jurado O., Cuartero J. Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J. Plant Physiol., 2006, 163(8): 847-855 CrossRef
  62. Murillo-Amador B., Yamada S., Yamaguchi T., Rueda-Puente E., Ávila-Serrano N., García‐Hernández J.L., López‐Aguilar R., Troyo‐Diéguez E., Nieto-Garibay A. Influence of calcium silicate on growth, physiological parameters and mineral nutrition in two legume species under salt stress. Journal of Agronomy and Crop Science, 2007, 193(6): 413-421 CrossRef
  63. Artyszak A. Effect of silicon fertilization on crop yield quantity and quality — a literature review in Europe. Plants, 2018, 7(3): 54 CrossRef
  64. Vinogradova V.S., Martyntseva A.A., Kazarin S.N. Zemledelie, 2015, 1: 32-34 (in Russ.).
  65. Bogomazov S.V., Levin A.A., Tkachuk O.A., Lyandenburskaya A.V. Niva Povolzh'ya, 2019, 3(52): 68-73 (in Russ.).
  66. Lavoy I., Croy R., Hageman H. Relationship of nitrate reductase activity to grain protein production in wheat. Crop Science, 1970, 10(3): 280-285 CrossRef
  67. Tao Z., Chang X., Wang D., Wang Y., Ma S., Yang Y., Zhao G. Effects of sulfur fertilization and short-term high temperature on wheat grain production and wheat flour proteins. The Crop Journal,2018, 6(4): 413-425 CrossRef
  68. Khursheed M.Q. Effect of foliar application of Salicylic acid on growth, yield components and chemical constituents of Wheat (Triticum aestivum L. var. Cham 6). 5th Scientific Conference of College of Agriculture. Article Salahaddin University. Erbil, 2011. Available: https://www.researchgate.net/publication/313968252. No date.
  69. Janda T., Gondor O.K., Yordanova R., Szalai G., Pál M. Salicylic acid and photosynthesis: signalling and effects. Acta Physiol. Plant, 2014, 36: 2537-2546 CrossRef
  70. Mokronosov A.T. Ontogeneticheskii aspekt fotosinteza [Ontogenetic aspects of photosynthesis]. Moscow, 1981 (in Russ.).

 

back

 


CONTENTS

 

 

Full article PDF (Rus)