doi: 10.15389/agrobiology.2017.3.454eng

UDC 635.1/.8:631.816

 

BIOLOGICAL PECULIARITIES IN THE RESPONSIVENESS
OF VEGETABLE CROP ROTATION TO PRECISION FERTILIZATION

A.I. Ivanov1, 2, V.V. Lapa3, A.A. Konashenkov1, Zh.A. Ivanov2

1Agrophysical Research Institute, Federal Agency of Scientific Organizations, 14, Grazhdanskii prosp., St. Petersburg, 195220 Russia,
e-mail office@agrophys.ru, ivanovai2009@yandex.ru (corresponding author);
2North-Westt Center for Interdisciplinary Studies Research of Food Supply, Federal Agency of Scientific Organizations, 7, sh. Podbel’skogo, St. Petersburg—Pushkin, 196608 Russia, e-mail szcentr@bk.ru;
3Institute for Soil Science and Agrochemistry, 90, vul. Kasinca, Minsk, 220108 Belarus,
e-mail brissagro@gmail.com

ORCID:
Ivanov A.I. orcid.org/0000-0002-1502-0798
Ivanova Zh.A. orcid.org/0000-0002-3138-8285

Received January 27, 2017

 

Spatial and temporal variability of growing conditions which affects the production process management is characteristic of agrophytocenosis. Spatial heterogeneity of soil essential properties is widely reported. A precision fertilization should be effective tool to control crop productivity. The highest potential of such fertilization could be expected for vegetable crops in the favorable soil and climatic conditions of the Nechernozemie of North-West Russia. In a microvegetation stationary two-factor experiment, plastic bottom-less pots of 1 m2 area were used to artificially form the upper part of the soil profile (Aarable 0-22 cm and А2В 22-40 cm horizons) simulating natural lithogenic mosaics of agro sod-podzolic sandy, sandy loam, light loam and medium loam soils subjected to weak and good cultivation. Their minimum, maximum, and average parameters for the 0-22 cm horizon were as follows: рНKCl of 4.34-6.35 and 5.40, humus content (by Tyurin) of 0.92-2.50 and 1.72 %, labile phosphorus and potassium (according to Kirsanov) of 125-550 and 390 mg/kg and 22-400 and 209 mg/kg, respectively. The vegetable crop rotation included black radish (Raphanus sativus L.)—potato (Solanum tuberosum L.)—beetroot (Beta vulgaris L.)—cabbage (Brassica oleracea L.)—carrot (Daucus sativus L.). For a comparison, we used different system of fertilization, i.e. control (no fertilizers); zonal system (ZS); precision fertilization 1 (PF-1); precision fertilization 2 (PF-2). In the ZS providing for a uniform application of the fertilizers based on the average soil properties, we used lime (4.5 t/ha + N95Р20К125) for black radish; manure (45 t/ha) + N100Р30К90 for potatoes; N130Р50К150 for beetroot; lime (2.1 t/ha) + manure (50 t/ha) + N120Р10К90 for cabbage; and N100Р40К130 for carrot. In the PF-1, two months before the radish was sown a precision soil cultivation has been performed using lime at 0-20 and 6.6 t/ha, peat at 0-900 and 390 t/ha; phosphorite flour at 0-750 and 94 kg/ha; potassium sulfate at 0-1710 and 407 kg/ha (as min-max and average). Further application of organic and mineral fertilizers before sowing (planting) was uniform, i.e. N70К60 for black radish; manure (45 t/ha) + N80К100 for potatoes; N100Р30К130 for beetroot; manure (50 t/ha) + N100Р10К70 for carrot; N100Р10К120 for white cabbage. In PF-2 providing average doses of all fertilizers equal to these in ZS, but differentiated for each pot based on actual soil parameters, we used lime (0-12 t/ha) + N70-120Р0-90К60-200 for black radish; manure (30-65 t/ha) + N80-110Р0-110К70-150 for potato; N90-170Р0-150К80-240 for beetroot; lime (2.1 t/ha) + manure (30-70 t/ha) + N110-135Р0-60 К40-120 for cabbage; N85-115Р10-90К79-180 for carrot. The experiments were arranged in four replications. In a field experiment the precision fertilization provided an increase in the productivity of vegetable crop rotation of 22.3 and 43.5 t/ha in control and ZS, respectively, to 47.9-49.4 t/ha. PF-1 and PF-2 resulted in the Сv reductionfrom 32 % and 16 % in the control and ZS to 9 %, and in an increased natural profitability of fertilizers by 21-49 %. A responsiveness of vegetable crop rotation to precision fertilization depended on biological features, the specific farming techniques and soil conditions. A decreasing responsiveness was as follows: black radish > car-rot » beet > potatoes > cabbage. A uniform application of high doses of organic fertilizers was the factor reducing precision fertilization effectiveness. Significant advantage of PF-1 compared to PF-2 was established only for black radish, beet and carrot. When designing precision fertilization technologies, one should take into account the following decrease in sensitivity of vegetable crops in crop rotation to optimized (reduced) doses of fertilizers in the well-cultivated parts of a field: cabbage > beet > carrot > radish black > potatoes. Due to differentiated doses of ameliorants and fertilizers and integrated optimization of soil properties, the precision fertilization eliminates the effect of soil heterogeneity in cultivation and granulometric composition on crop production and allows to increase productivity and payback of natural fertilizers to 28-42 and 21-67 % in sand, 17-26 and 25-47 % in sandy loam, 30-31 and 49-55 % in a light loam, and 11-16 and 0-35 % in middle loam soils, when compared to ZS.

Keywords: spatial heterogeneity, the soil, precise fertilization system, culture, vegetable crop rotation, productivity, efficiency.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. Derzhavin L.M. Agrokhimiya, 2013, 8: 18-29 (in Russ.).
  2. Ivanov A.I., Konashenkov A.A., Ivanova Zh.A., Vorob'ev V.A., Fesenko M.A., Danilova T.A., Filippov P.A. Agrofizika, 2016, 2: 35-44 (in Russ.).  
  3. Robert P.C. Precision agriculture: a challenge for crop nutrition management. Plant Soil, 2002, 247(1): 143-149 CrossRef
  4. Lapa V., Lomonos M. Crop yield and quality depending on fertilization in crop rotation on sod-podzolic soil. In: Soil as World Heritage. D. Dent (ed.). Springer Netherlands, 2014: 303-308 CrossRef
  5. Shpanev A.M. Agrofizika, 2016, 2: 24-34 (in Russ.).    
  6. Tangwongkit R., Salokhe V.M., Jayasuriya H.P.W. Development of a real-time, variable rate herbicide applicator using machine vision for between-row weeding of sugarcane fields. Agriculture, 2006, 8: 1-12.  
  7. Lu P., Su Y.-R., Niu Z., Wu J.-S. Nongye yu shengming kexue. Zhejiang daxue xuebao, 2007, 33(1): 89-95. 
  8. Soon Y.K., Malhi S.S. Soil nitrogen dynamics as affected by landscape position and nitrogen fertilizer. Can. J. Soil Sci., 2005, 85(5): 579-587 CrossRef 
  9. Shpedt A.A., Purlaur V.K. Sibirskii vestnik sel'skokhozyaistvennoi nauki, 2008, 10: 5-11 (in Russ.).   
  10. Zhang S., Zhang X., Huffman T., Liu X., Yang J. Influence of topography and land management on soil nutrients variability in Northeast China. Nutr. Cycl. Agroecosyst., 2011, 89(3): 427-438 CrossRef 
  11. Samsonova V.P., Meshalkina Yu.L. Vestnik Moskovskogo universiteta, Seriya 17: Pochvovedenie, 2014, 3: 36-44 (in Russ.).     
  12. Akbas F., Gunal H., Gokmen F., Gezging S., Ersahin S. Spatial variation of micronutrients in topsoil and subsoil of Fertic Haplustepts. Agrochimica, 2009, 53(2): 101-116.
  13. Basevich V.F., Teten'kin V.L. Vestnik Moskovskogo universiteta, Seriya 17: Pochvovedenie, 2010, 2: 35-42 (in Russ.).   
  14. Knyazhneva E.V., Nadezhkin S.M., Frid A.S. The spatial heterogeneity of the fertility in a leached chernozem within a field. Eurasian Soil Sc., 2006, 39(9): 1011-1020 CrossRef   
  15. Ivanov A.I., Konashenkov A.A., Khomyakov Yu.V., Fomenko T.G., Fed'kin I.A. Agrokhimiya, 2014, 2: 39-49 (in Russ.).    
  16. Ivanov A.I., Konashenkov A.A. Agrokhimiya, 2012, 6: 66-72 (in Russ.).   
  17. Fomenko T.G., Pavlova V.P., Ivanov A.I. Problemy agrokhimii i ekologii, 2012, 4: 8-13 (in Russ.).
  18. Scherpinski C., Uribe-Opaso M.A., Vilas B.M.A., Sampaio S.C. Variabilidade espacial da condutividade hidraulica e da infiltracao da agua no solo. Acta Scientiarum. Agronomy, 2010, 32(1): 7-13 CrossRef
  19. Zhang X.-Y., Sui Y.-Y., Zhang X.-D., Meng K., Herbert S.J. Spatial variability of nutrient properties in black soil of Northeast China. Pedosphere, 2007, 17(1): 19-29 CrossRef
  20. Gallardo A. Spatial variability of soil properties in a floodplain in Northwest Spain. Ecosystems, 2003, 6: 564-576 CrossRef
  21. Gallardo A., Parama R. Spatial variability of soil elements in two plant communities of NW Spain. Geoderma, 2007, 139: 199-208 CrossRef
  22. Yakushev V.P., Lekomtsev P.V., Petrushin A.F. Informatsiya i kosmos, 2014, 3: 50-56.
  23. Badenko V., Kurtener D., Yakushev V.P., Torbert A., Badenko G. Evaluation of current state of agricultural land using problem-oriented fuzzy indicators in GIS environment. Lect. Notes Comput. Sc., 2016, 9788: 57-69 CrossRef
  24. Koroleva I.E., Frid A.S. Tentative separation of soil-agrochemical areas on a plowland and their relation with the relief and plant productivity. Eurasian Soil Sc., 2006, 39(12): 1344-1351 CrossRef
  25. Zinkevicius R. Influence of soil sampling for precision fertilizing. Agron. Res., 2008, 6(Spec. Issue): 423-429.
  26. Schneider M., Wagner P., Herbst R., Ertragspotential sichern. Intelligente probung-Grundlage fur differenzierte Grunddungung. Neue Landwirtschaft, 2008, 8: 48-51.
  27. Ivanov A.I., Konashenkov A.A. Sel'skokhozyaistvennye mashiny i tekhnologii, 2014, 3: 20-24 (in Russ.).  
  28. Frossard E., Buneman E., Jansa J., Oberson A., Foller C. Concepts and practices of nutrient management in agro-ecosystems: Can we draw lessons from history to design future sustainable agricultural production systems? Bodenkultur, 2009, 60(1): 43-60.
  29. Plachter H., Stachow U., Werner A. Methoden zur naturschutzfachlichen Konkretisirung der «Guten fachlichen Praxis» in der Landwirtschaft. Bonn-Bad Godesberg, 2005.
  30. Lapa V.V. Problemy upravleniya, 2007, 4: 43-48 (in Russ.).
  31. Angermair W., Lorenz F. Dungung nach Diagnose. Neue Landwirtschaft, 2009, 3: 70-73.
  32. Herbst R., Rettberg T. Mehr Prazision moglich. Teilflachenspezifische Grundungung bisher zu wenig beachtet. Neue Landwirtschaft, 2005, 2: 44-47.
  33. Kang T.-H., Sugiura R., Noguchi N. Growth analysis and variable rate fertilizer application of wheat field using multi-spectrum image sensor. Environ. Contr. Biol., 2006, 44(3): 207-214.
  34. Grenaderov S.V., Borisov V.A. Kartofel' i ovoshchi, 2010, 4: 10 (in Russ.). 
  35. Borisov V.A. Kartofel' i ovoshchi, 2009, 8: 12-13 (in Russ.).
  36. Litvinov S.S., Borisov V.A., Romanova A.V., Polyakov A.A. Vladimirskii zemledelets, 2012, 1: 20-21 (in Russ.). 
  37. Litvinov S.S., Chutcheva Yu.V., Shatilov M.V., Bashkirov A.V. Ekonomika sel'skogo khozyaistva Rossii, 2016, 6: 37-43 (in Russ.).

back