PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2019.2.216eng

UDC: 636.1:619:578.7

 

VACCINES AGAINST EQUINE INFLUENZA (review)

L.V. Kostina1, T.V. Grebennikova1, A.D. Zaberezhnyi1,2, T.I. Aliper1,2

1GamaleyaNational Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 18, ul. Gamalei, Moscow, 123098 Russia, e-mail t_grebennikova@mail.ru, lvkostina@mail.ru (✉ corresponding author);
2Federal Scientific Centre Skryabin and Kovalenko All-Russian Research Institute of Experimental Veterinary RAS, 24/2, Ryazanskii Prosp., Moscow, 109428 Russia, e-mail zaberezhny@mail.ru, aliper@narvac.com

ORCID:
Kostina L.V. orcid.org/0000-0002-9556-1454
Zaberezhnyi A.D. orcid.org/0000-0001-7635-2596
Grebennikova T.V. orcid.org/0000-0002-6141-9361
Aliper T.I. orcid.org/0000-0002-5876-2425

Received June 21, 2018

 

Equine influenza is a highly infectious disease that can rapidly spread and induce high morbidity in susceptible horse populations (K.P. Yurov, 2009; S.P. Waghmare et al., 2010). Equine influenza is caused by RNA viruses are belonged to the genus Influenzavirus A of the family Orthomyxoviridae (A.D. Zaberezhnyi et al., 2017). Two different equine influenza virus (EIV) subtypes have been recognized based on antigenic properties of the envelope glycoproteins (HA and NA), the H7N7 subtype (equi-1) and the H3N8. The H7N7 subtype was first isolated in Czechoslovakia in 1956 (prototype strain: A/eq/Prague/1/56). The last confirmed outbreak occurred in 1979 in Italy. The H3N8 subtype of EIV is still circulating in the most countries of the world and has caused outbreaks of disease US and Europe (R. Paillot, 2014; B. Cowled et al., 2009; C.O. Perglione et al., 2016; A.I. Kydyrmanov et al., 200;). Vaccination is one of the most effective tools, alongside isolation, movement restriction and basic biosecurity measures, to prevent EIV infection or to limit its consequences (S.S. Wong et al., 2013). The main goal of vaccination against equine influenza is a significant reduction in clinical signs of disease, virus replication and shedding. Potent EIV vaccines reduce virus transmission and increase resistance to infection (D.J. Baker, 1986). Because of effectiveness EIV vaccines depends on antigenic homology between vaccines and circulates strains of EIV all equine influenza vaccines should contain epidemiologically relevant strains recommended by the OIE (OIE Expert Surveillance Panel on Equine Influenza Vaccine Composition, 2017; R. Paillot, 2014). In accordance with last OIE recommendations EIV vaccines should contain both clade 1 and clade 2 viruses of the Florida sublineage. Clade 1 continues to be represented by A/eq/South Africa/04/2003-like or A/eq/Ohio/2003-like viruses. Clade 2 continues to be represented by A/eq/Richmond/1/2007-like viruses. It is not necessary to include an H7N7 virus or an H3N8 virus of the Eurasian lineage in vaccines (R. Paillot, 2014; OIE Headquarters, 2017). This review gives actual data about the types of licensed vaccines against equine influenza. Whole inactivated/sub-unit, live-attenuated and viral-vector based vaccines are considered. Numerous experimental EIV vaccines developed with modern molecular biology technique have been reported. Reverse genetics techniques which provide a good tool for the generation of recombinant influenza viruses and develop both inactivated and live-attenuated influenza vaccines are also discussed (E.-J. Jung et al., 2010; E. Hof-fmann et al., 2010; Y. Uchida et al., 2014). Reverse genetics allows generation of artificial recombinant influenza viruses and provides the possibility to rapidly and easily modify the antigenic characteristics of the vaccine strain by genetic manipulation.

Keywords: equine influenza, vaccines, vaccination, whole inactivated vaccines, sub-unit vaccines, live-attenuated vaccines, viral-vector based vaccines, recombinant vaccines, reverse genetics.

 

 

REFERENCES

  1. Yurov K.P. Gripp loshadei. Veterinariya, 2009, 6: 3-7 (in Russ.).
  2. Waghmare S.P., Mode S.G., Kolte A.Y., Babhulkar N., Vyavahare S.H., Patel A. Equine influenza: an overview. Veterinary World, 2010, 3(4): 194-197.
  3. Paillot R. A systematic review of recent advances in equine influenza vaccination. Vaccines, 2014, 2(4): 797-831 CrossRef
  4. Zaberezhnyi A.D., Kostina L.V., Yuzhakov A.G., Gulyukina I.A., Stepanova T.V., Stafford V.V., Polyakova I.V., Drozdova E.I. Veterinariya i kormlenie, 2017, 1: 4 (in Russ.).
  5. Singh G. Characterization of A/eq-1 virus isolated during the equine influenza epidemic in India. Acta Virologica, 1994, 38(1): 25-26.
  6. Ismail T.M., Sami A.M., Youssef H.M., Abou Zaid A.A. An outbreak of equine influenza type 1 in Egypt in 1989. Veterinary Medical Journal — Giza, 1990, 38(2): 195-206.
  7. Waddell G.H., Teigland M.B., Sigel M.M. A new influenza virus associated with equine respiratory disease. J. Am. Vet. Med. Assoc., 1963, 143: 587-590.
  8. Daly J.M., Lai A.C., Binns M.M., Chambers T.M., Barrandeguy M., Mumford J.A. Antigenic and genetic evolution of equine H3N8 influenza A viruses. Journal of General Virology, 1996, 77(4): 661-671 CrossRef
  9. Lai A.C., Chambers T.M., Holland R.E. Jr., Morley P.S., Haines D.M., Townsend H.G., Barrandeguy M. Diverged evolution of recent equine-2 influenza (H3N8) viruses in the Western Hemisphere. Arch. Virol., 2001, 146(6): 1063-1074 CrossRef
  10. Yurov K.P., Alekseenkova S.V., Yurov G.K., Ivanov V.V. Veterinariya, 2011, 6: 22-25 (in Russ.">CrossRef
  11. Alves Beuttemmuller E., Woodward A., Rash A., Dos Santos Ferraz L.E., Fernandes Alfieri A., Alfieri A.A., Elton D. Characterisation of the epidemic strain of H3N8 equine influenza virus responsible for outbreaks in South America in 2012. Virology Journal, 2016, 13: 45 CrossRef
  12. Woodward A.L., Rash A.S., Blinman D., Bowman S., Chambers T.M., Daly J.M., Damiani A., Joseph S., Lewis N., McCauley J.W., Medcalf L., Mumford J., Newton J.R., Tiwari A., Bryant N.A., Elton D.M. Development of a surveillance scheme for equine influenza in the UK and characterisation of viruses isolated in Europe, Dubai and the USA from 2010-2012. Veterinary Microbiology, 2014, 169(3-4): 113-127 CrossRef
  13. Rash A., Morton R., Woodward A., Maes O., McCauley J., Bryant N., Elton D. Evolution and divergence of H3N8 equine iinfluenza viruses circulating in the United Kingdom from 2013 to 2015. Pathogens, 2017, 6(1): 6 CrossRef
  14. Fougerolle S., Legrand L., Lecouturier F., Sailleau C., Paillot R., Hans A., Pronost S. Genetic evolution of equine influenza virus strains (H3N8) isolated in France from 1967 to 2015 and the implications of several potential pathogenic factors. Virology, 2017, 505: 210-217 CrossRef
  15. Yondon M., Heil G.L., Burks, J.P., Zayat B., Waltzek T.B., Jamiyan B.O., McKenzie P.P., Krueger W.S., Friary J.A., Gray G.C. Isolation and characterization of H3N8 equine influenza A virus associated with the 2011 epizootic in Mongolia. Influenza and Other Respiratory Viruses, 2013, 7(5): 659-665 CrossRef
  16. Qi T., Guo W., Huang W.Q., Li H.M., Zhao L.P., Dai L.L., He N., Hao X.F., Xiang W.H. Genetic evolution of equine influenza viruses isolated in China. Archives of Virology, 2010, 155(9): 1425-1432 CrossRef
  17. Cowled B., Ward M.P., Hamilton S., Garner G. The equine influenza epidemic in Australia: spatial and temporal descriptive analyses of a large propagating epidemic. Preventive Veterinary Medicine, 2009, 92(1-2): 60-70 CrossRef
  18. Yamanaka T., Niwa H., Tsujimura K., Kondo T., Matsumura T. Epidemic of equine influenza among vaccinated racehorses in Japan in 2007. Journal of Veterinary Medical Science, 2008, 70(6): 623-625 CrossRef
  19. Ito M., Nagai M., Hayakawa Y., Komae H., Murakami N., Yotsuya S., Asakura S., Sakoda Y., Kida H. Genetic analyses of an H3N8 influenza virus isolate, causative strain of the outbreak of equine influenza at the Kanazawa racecourse in Japan in 2007. Journal of Veterinary Medical Science, 2008, 70(9): 899-906 CrossRef
  20. Virmani N., Bera B.C., Singh B.K., Shanmugasundaram K., Gulati B.R., Barua S., Vaid R.K., Gupta A.K., Singh R.K. Equine influenza outbreak in India (2008-09): Virus isolation, sero-epidemiology and phylogenetic analysis of HA gene. Veterinary Microbiology, 2010, 143(2-4): 224-237 CrossRef
  21. Perglione C.O., Gildea S., Rimondi A., Miño S., Vissani A., Carossino M., Cullinane A., Barrandeguy M. Epidemiological and virological findings during multiple outbreaks of equine influenza in South America in 2012. Influenza and Other Respiratory Viruses, 2016, 10(1): 37-46 CrossRef
  22. Kydyrmanov A.I., Kumekbayeva Zh.Zh., Karamendin K.O., Daulbayeva K.D., Shakhvor-ostova L.I., Zhumatov K.Kh. Isolation of an influenza virus A (H3N8) from horses in Kazakhstan in 2007. Veterinarya, 2009, 5: 52-54.
  23. Yondon M., Heil G.L., Burks, J.P., Zayat B., Waltzek T.B., Jamiyan B.O., McKenzie P.P., Krueger W.S., Friary J.A., Gray G.C. Isolation and characterization of H3N8 equine influenza A virus associated with the 2011 epizootic in Mongolia. Influenza and Other Respiratory Viruses, 2013, 7(5): 659-665 CrossRef
  24. Yang H., Xiao Y., Meng F., Sun F., Chen M., Cheng Z., Chen Y., Liu S., Chen H. Emergence of H3N8 equine influenza virus in donkeys in China in 2017. Veterinary Microbiology, 2018, 214: 1-6 CrossRef
  25. Saryglar L.K., Kolomytsev A.A., Smirnov V.N., Kuular R.K., Dostai S.M., Murueva G.B. Veterinarnaya patologiya, 2009, 4: 41-46 (in Russ.).
  26. OIE. Chapter 2.5.7 Equine influenza. In manual of diagnostic tests and vaccines for terrestrial animals. OIE, Paris, 2016: 1-16. Available http://www.oie.int/fileadmin/Home/eng/He-alth_standards/tahm/3.05.07_EQ_INF.pdf. Accessed April 15, 2019.
  27. OIE Expert surveillance panel on equine influenza vaccine composition, OIE Headquarters, 28 March 2018. The World Organisation for Animal Health (OIE), 2017: 86-87. Available http://www.oie.int/en/our-scientific-expertise/specific-information-and-recommendations/equine-influenza/. No date.
  28. Wong S.S., Webby R.J. Traditional and new influenza vaccines. Clinical Microbiology Reviews, 2013, 26: 476-492 CrossRef
  29. Baker D.J. Rationale for the use of influenza vaccines in horses and the importance of antigenic drift. Equine Veterinary Journal, 1986, 18(2): 93-96 CrossRef
  30. Palliot R., Pitel C.M., D’Ablon X., Pronost S. Equine vaccines: how, when and why? Report of the Vaccinology Session, French Equine Veterinarians Association, 2016, Reims. Vaccines, 2017, 5(4): 46 CrossRef
  31. Yurov K.P., Zhidkov S.A. Byulleten' Vsesoyuznogo ordena Lenina nauchno-issledovatel'skogo instituta eksperimental'noi veterinarii im. Ya.R. Kovalenko, 1972, 14: 47-50 (in Russ.).
  32. Paillot R., Hannant D., Kydd J.H., Daly J.M. Vaccination against equine influenza: Quid novi? Vaccine, 2006, 24(19): 4047-4061 CrossRef
  33. Paillot R., Prowse L., Montesso F., Huang C.M., Barnes H., Escala J. Whole inactivated equine influenza vaccine: efficacy against a representative clade 2 equine influenza virus, IFNgamma synthesis and duration of humoral immunity. Vet. Microbiol., 2013, 162: 396-407 CrossRef
  34. Nelson K.M., Schram B.R., McGrergor M.W., Sheoran A.S., Olsen C.W., Lunn D.P. Local and systemic isotype-specific antibody responses to equine influenza virus infection versus conventional vaccination. Vaccine, 1998, 16(13): 1306-1313 CrossRef
  35. Isaenko E.Yu., Babich E.M., Eliseeva I.V., Zhdamarova L.A., Belozerskii V.I., Kolpak S.A. Annals of Mechnikov Institute, 2013, 4: 5-21 (in Russ.).
  36. Elton D., Bryant N. HBLB’s advances in equine veterinary science and practice. Facing the threat of equine influenza. Equine Veterinary Journal, 2011, 43(3): 250-258.
  37. Holmes M.A., Townsend H.G., Kohler A.K., Hussey S., Breathnach C., Barnett C., Holland R., Lunn D.P. Immune responses to commercial equine vaccines against equine herpesvirus-1, equine influenza virus, eastern equine encephalomyelitis, and tetanus. Veterinary Immunology and Immunopathology, 2006, 111(1-2): 67-80 CrossRef
  38. Youngner J.S., Whitaker-Dowling P., Chambers T.M., Rushlow K.E., Sebring R. Derivation and characterization of a live attenuated equine influenza vaccine virus. American Journal of Veterinary Research, 2001, 62(8): 1290-1294.
  39. Lunn D.P., Hussey S., Sebing R., Rushlow K.E., Radecki S.V., Whitaker-Dowling P., Youngner J.S., Chambers T.M., Holland Jr. R.E., Horohov D.W. Safety, efficacy and immunogenicity of a modified-live equine influenza virus vaccine in ponies after induction of exercise-induced immunosuppression. Journal of the American Veterinary Medical Association, 2001, 218(6): 900-906 CrossRef
  40. Chambers T.M., Holland R.E., Tudor L.R., Townsend H.G.G., Cook A., Bogdan J., Lunn D.P., Hussey S., Whitaker-Dowling P., Youngner J. S., Sebring R.W., Penner S.J., Stiegler G.L. A new modified live equine influenza virus vaccine: phenotypic stability, restricted spread and efficacy against heterologous virus challenge. Equine Veterinary Journal, 2001, 33(7): 630-636 CrossRef
  41. Chervyakova O., Strochkov V., Tailakova E., Sultankulova K., Sandybayev N., Sansyzbay A., Gorev N., Sergeeva M., Potapchuk M., Repko I., Tsybalova L., Kiselev O. Recombinant strain A/HK/Otar/6:2/2010 (H3N8) for development of a live intranasal equine influenza vaccine. Journal of Equine Veterinary Science, 2014, 34(6): 749-758 CrossRef
  42. Tabynov K. A new safe and effective cold-adapted modified live equine influenza virus vaccine that enables the differentiation of infected from vaccinated animals. Microbiology Independent Research Journal, 2016, 3(1): 68-73 CrossRef
  43. Hoffmann E., Neumann G., Kawaoka Y., Hobom G., Webster R.G. A DNA transfection system for generation of influenza A virus from eight plasmids. Proceedings of the National Academy of Sciences, 2000, 97(11): 6108-6113 CrossRef
  44. Jung E.-J., Lee K.-H., Seong B.L. Reverse genetic platform for inactivated and live-attenuated influenza vaccine. Experimental & Molecular Medicine, 2010, 42(2): 116-121 CrossRef
  45. Richt J.A., Lekcharoensuk P., Lager K.M., Vincent A.L., Loiacono C.M., Janke B.H., Wu W.H., Yoon K.J., Webby R.J., Solorzano A., Garcia-Sastre A. Vaccination of pigs against swine influenza viruses by using an NS1-truncated modified live-virus vaccine. Journal of Virology, 2006, 80(22): 11009-11018 CrossRef
  46. Zaberezhnyi A.D., Grebennikova T.V., Vorkunova G.K., Yuzhakov A.G., Kostina L.V., Norkina S.N., Aliper T.I., Nepoklonov E.A., L'vov D.K. Voprosy virusologii, 2014, 59(6): 23-27 (in Russ.).
  47. Uchida Y., Takemae N., Saito T. Application of reverse genetics for producing attenuated vaccine strains against highly pathogenic avian influenza viruses. Journal of Veterinary Medical Science, 2014, 76(8): 1111-1117 CrossRef
  48. Quinlivan M., Zamarin D., Garcia-Sastre A., Cullinane A., Chambers T., Palese P. Attenuation of equine influenza viruses through truncations of the NS1 protein. Journal of Virology, 2005, 79(13): 8431-8439 CrossRef
  49. Chambers T.M., Quinlivan M., Sturgill T., Cullinane A., Horohov D.W., Zamarin D., Arkins S., Garcia-Sastre A., Palese P. Influenza A viruses with truncated NS1 as modified live virus vaccines: Pilot studies of safety and efficacy in horses. Equine Veterinary Journal, 2009, 41(1): 87-92 CrossRef
  50. Rodrigueza L., Reedyb S., Nogalesa A., Murciac P.R., Chambersb T.M., Martinez-Sobridoa L. Development of a novel equine influenza virus live-attenuated vaccine. Virology, 2018, 516: 76-85 CrossRef
  51. Baz M., Paskel M., Matsuoka Y., Zengel J., Cheng X., Treanor J.J., Jin H., Subbarao K. A live attenuated equine H3N8 influenza vaccine is highly immunogenic and efficacious in mice and ferrets. Journal of Virology, 2015, 89: 1652-1659 CrossRef
  52. Draper S.J., Heeney J.L. Viruses as vaccine vectors for infectious diseases and cancer. Nature Reviews Microbiology, 2010, 8(1): 62-73 CrossRef
  53. Breathnach C.C., Clark H.J., Clark R.C., Olsen C.W., Townsend H.G., Lunn D.P. Immunization with recombinant modified vaccinia Ankara (rMVA) constructs encoding the HA or NP gene protects ponies from equine influenza virus challenge. Vaccine, 2006, 24: 1180-1190 CrossRef
  54. Paillot R., Rash N., Garrett D., Prowse-Davis L., Montesso F., Cullinane A., Lemaitre L., Thibault J.-C., Wittreck S., Dancer A. How to meet the last OIE expert surveillance panel recommendations on equine influenza (EI) vaccine composition: a review of the process required for the recombinant Canarypox-based EI vaccine. Pathogens, 2016, 5(4): 64 CrossRef
  55. Paillot R., El-Hage C.M. The use of a recombinant canarypox-based equine influenza vaccine during the 2007 Australian outbreak: a systematic review and summary. Pathogens, 2016, 5(2): 42 CrossRef
  56. Poulet H., Minke J., Pardo M. C., Juillard V., Nordgren B., Audonnet J.-C. Development and registration of recombinant veterinary vaccines. The example of the canarypox vector platform. Vaccine, 2007, 25(30): 5606-5612 CrossRef
  57. Minke J.M., Toulemonde C.E., Coupier H., Guigal P.M., Dinic S., Sindle T., Jessett D., Black L., Bublot M., Pardo M.C., Audonnet J.C. Efficacy of a canarypox-vectored recombinant vaccine expressing the hemagglutinin gene of equine influenza H3N8 virus in the protection of ponies from viral challenge. American Journal of Veterinary Research, 2007, 68(2): 213-219 CrossRef
  58. Soboll G., Hussey S.B., Minke J.M., Landolt G.A., Hunter J.S., Jagannatha S., Lunn D.P. Onset and duration of immunity to equine influenza virus resulting from canarypox-vectored (ALVAC®) vaccination. Veterinary Immunology and Immunopathology, 2010, 135(1-2): 100-107 CrossRef
  59. Van de Walle G.R., May M.A., Peters S.T., Metzger S.M., Rosas C.T., Osterrieder N. A vectored equine herpesvirus type 1 (EHV-1) vaccine elicits protective immune responses against EHV-1 and H3N8 equine influenza virus. Vaccine, 2010, 28(4): 1048-1055 CrossRef
  60. Nogales A., Martínez-Sobrido L. Reverse genetics approaches for the development of influenza vaccines. Int. J. Mol. Sci., 2017, 18(1): 20 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)