PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2019.2.280eng

UDC: 636.52/.58:636.084.416:579.6

Acknowledgements:
Supported financially by Russian Science Foundation, grant 16-16-04089 “Physiological and microbiological study of embryonic and postembryonic digestion in meat chickens to create feeding technologies for ensuring poultry genetic potential realization”.

 

POULTRY DIETS WITHOUT ANTOBIOTICS. I. INTESTINAL MICROBIOTA AND PERFORMANCE OF BROILER (Gallus gallus L.) BREEDERS FED DIETS WITH ENTEROSORBENT POSSESSING PHYTOBIOTIC AND PROBIOTIC EFFECTS

I.A. Egorov1, T.N. Lenkova1, V.A. Manukyan1, T.A. Egorova1,
I.N. Nikonov1, L.A. Ilina2, G.Yu. Laptev2

1Federal Scientific Center All-Russian Research and Technological Poultry Institute RAS, 10, ul. Ptitsegradskaya, Sergiev Posad, Moscow Province, 141311 Russia, e-mail olga@vnitip.ru, dissovet@vnitip.ru (✉ corresponding author), manukyan@vnitip.ru, eta164@mail.ru, ilnikonov@yandex.ru;
2JSC «Biotrof+», 19 korp. 1, Zagrebskii bulv., St. Petersburg, 192284 Russia, e-mail ilina@biotrof.ru, laptev@biotrof.ru

ORCID:
Egorov I.A. orcid.org/0000-0001-9122-9553
Lenkova T.N. orcid.org/0000-0001-8026-3983
Manukyan V.A. orcid.org/0000-0003-4564-4427
Egorova T.A. orcid.org/0000-0002-5102-2248
Nikonov I.N. orcid.org/0000-0001-9495-0178
Ilina L.A. orcid.org/0000-0003-2490-6942
Laptev G.Yu. orcid.org/0000-0002-8795-6659

Received November 5, 2017

 

Recent trend of rejection of the in-feed antibiotics in animal and poultry production launched the search for reliable alternative growth stimulators, primarily probiotics, or phytobiotics (most commonly essential oils) rendering antimicrobial and antioxidant properties to improve the digestibility of dietary nutrients, suppress the growth of pathogens, etc. Another important problem is the contamination of feeds with mycotoxins which can negatively impact the productive performance in poultry. The growth efficiency and composition of intestinal microbiota were studied in growing broiler (Gallus gallus L.) breeders of preparental lines B5 and B9 (selected at the Center for Genetic Selection “Smena”, Moscow Province) fed vegetable diets supplemented with complex preparation Zaslon 2+ (JSC Biotrof+, Russia), containing an intestinal adsorbent, a mixture of essential oils, and a strain of Bacillus sp. (105 CFU/g). Zootechnical and physiological experiments were carried out in in 2017 (Smena Center, Zagorsk EPH, Sergiev Posad, Moscow Province). Control poultry fed the same vegetable diets with dietary antibiotics Bacitracin 30 (42 U/mg, a dosage of 100 g/t). Test and control groups contained 50 birds each. There were no significant differences between the control and experimental treatments in live bodyweight at 21 weeks of age: 3168 g in males and 2317 g in females in B5 line (vs. 3171 and 2307 g in control), 2592 and 1930 g in B9 line (vs. 2574 and 1924 g in control), in the development of the reproductive organs (testicles in males, ovary and oviduct in females), and in the digestibility of dietary nutrients. In the duodenal microbiota from 18 to 110 bacterial phylotypes, with statistically significant differences from control for several taxonomic groups (p < 0.05), were found using terminal restriction fragment length polymorphism (T-RFLP) analysis. The calculated indices revealed taxonomic diversity and complexity of the intestinal bacterial communities in both control treatments (B5 and B9); in both experimental treatments more unidentified bacterial phylotypes were found in compare to the respective control treatments. An increase in the number of bacteria of the Bacillaceae and cellulolytic bacteria of the Clostridiaceae in the duodenum of the B9 line birds and an increase in the number of bacteria of the genus Bifidobacterium and the order Bacteroidales, along with a decrease in genus Campylobacter counts, in the duodenum of the B5 line birds occurred as a result of administration of the Zaslon 2+ preparation. Therefore, an increase in the number of bacteria in these groups and a decrease in the proportion of pathogenic microorganisms may indicate correction of dysbiotic disorders in the intestines of birds.

Keywords: preparental lines, broiler chicken, phytobiotics, intestinal adsorbent, live bodyweight, intestinal microbiota.

 

 

REFERENCES

  1. Fisinin V. Zhivotnovodstvo Rossii, 2019, 3: 8-11 (in Russ).
  2. Egorova A.V. Ptitsevodstvo, 2012, 12: 8-10 (in Russ.).
  3. Biggs P., Parsons C.M., Fahey G.C. The effects of several oligosaccharides on growth performance, nutrient digestibilities, and cecal microbial populations in young chicks. Poultry Science, 2007, 86(11): 2327-2336 CrossRef
  4. Chichlowski M., Croom J., McBride B.W., Daniel L., Davis G., Kaci M.D. Direct-fed microbial PrimaLac and Salinomycin modulate whole-body and intestinal oxygen consumption and intestinal mucosal cytokine production in the broiler chick. Poultry Science, 2007, 86(6): 1100-1106 CrossRef
  5. Murugesan G.R., Ledoux D.R., Naehrer K., Berthiller F., Applegate T.J., Grenier B., Phillips T.D., Schatzmayr G. Prevalence and effects of mycotoxins on poultry health and performance, and recent development in mycotoxin counteracting strategies. Poultry Science, 2015, 94(6): 1298-1315 CrossRef
  6. Peng W.-X., Marchal J.L.M., van der Poel A.F.B. Strategies to prevent and reduce mycotoxins for compound feed manufacturing. Animal Feed Science and Technology, 2018, 237: 129-153 CrossRef
  7. Stanley D., Hughes R.G., Moore R. Microbiota of chicken gastrointestinal tract: influence on health. productivity and disease. Applied Microbiology and Biotechnology, 2014, 98(10): 4301-4310 CrossRef
  8. Surai P.F. Polyphenol compounds in the chicken/animal diet: from the past to the future. Journal of Animal Physiology and Animal Nutrition, 2014, 98(1): 19-31 CrossRef
  9. Loi M., Fanelli F., Liucci V.C., Logrieco A.F., Mulè G. Mycotoxin biotransformation by native and commercial enzymes: Present and future perspectives. Toxins, 2017, 9(4): 111 CrossRef
  10. Smith J.A. The future of poultry production in the USA without antibiotics. Poultry International, 2002, 9: 68-69.
  11. Kryukov V.S., Glebova I.V. Problemy biologii produktivnykh zhivotnykh, 2017, 3: 5-25 (in Russ.).
  12. Yang Ch., Chowdhury M.A.K., Hou Y., Gong J. Phytogenic compounds as alternatives to in-feed antibiotics: Potentials and challenges in application. Pathogens, 2015, 4(1): 137-156 CrossRef
  13. Jamroz D., Wiliczkiewicz A., Wertelecki T., Orda J., Skorupińska J. Use of active substances of plant origin in chicken diets based on maize and locally grown cereals. British Poultry Science, 2005, 46(4): 485-493 CrossRef
  14. Jang I.S., Ko Y.H., Kang S.Y., Lee C.Y. Effect of a commercial essential oil on growth performance, digestive enzyme activity and intestinal microflora population in broiler chickens. Animal Feed Science and Technology, 2007, 134(3-4): 304-315 CrossRef
  15. Adil S., Magray S.N. Impact and manipulation of gut microflora in poultry: a review. Journal of Animal and Veterinary Advances, 2012, 11(6): 873-877 CrossRef
  16. Windisch W., Schedle K., Plitzner C., Kroismayr A. Use of phytogenic products as feed additives for swine and poultry. Journal of Animal Science, 2008, 86: E140-E148 CrossRef
  17. Brenes A., Roura E. Essential oils in poultry nutrition: Main effects and modes of action. Animal Feed Science and Technology, 2010, 158(1-2): 1-14 CrossRef
  18. Zeng Z., Zhang S., Wang H., Piao X. Essential oil and aromatic plants as feed additives in non-ruminant nutrition: a review. Journal of Animal Science and Biotechnology, 2015, 6(1): 7-18 CrossRef
  19. Borda-Molina D., Seifert J., Camarinha-Silva A. Current perspectives of the chicken gastrointestinal tract and its microbiome. Computational and Structural Biotechnology Journal, 2018, 16: 131-139 CrossRef
  20. Amit-Romach E., Sklan D., Uni Z. Microflora ecology of the chicken intestine using 16S ribosomal DNA primers. Poultry Science, 2004, 83(7): 1093-1098 CrossRef
  21. Apajalahti J., Kettunen A., Graham H. Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. World’s Poultry Science Journal, 2004, 60(2): 223-232 CrossRef
  22. Fisinin V.I., Egorov I.A., Manukyan V.A., Laptev G.Yu., Nikonov I.N., Il'ina L.A., Novikova N.I. Ptitsaiptitseprodukty, 2014, 6: 37-39 (in Russ.).
  23. Havenstein G.B., Ferket P.R., Qureshi M.A. Growth, livability, and feed conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poultry Science, 2003, 82(10): 1500-1508 CrossRef
  24. Lumpkins B.S., Batal A.B., Lee M.D. Evaluation of the bacterial community and intestinal development of different genetic lines of chickens. Poultry Science, 2010, 89(8): 1614-1621 CrossRef
  25. Lenkova T., Egorova T., Men'shenin I. Kombikorma, 2013, 10: 79-81 (in Russ.).
  26. Lenkova T.N., Egorova T.A., Sysoeva I.G., Kartashov M.I. Ptitsevodstvo, 2015, 5: 7-10 (in Russ.).
  27. Il'ina L.A., Iyldyrym E.A., Nikonov I.N., Filippova V.A., Laptev G.Yu., Novikova N.I., Grozina A.A., Lenkova T.N., Manukyan V.A., Fisinin V.I., Egorov I.A. Taxons of chicken cecum microbiom are abundant, and influenced by the combined feed composition and decreased metabolizable energy. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2015, 50(6): 817-824 CrossRef
  28. Fisinin V.I., Il'ina L.A., Iyldyrym E.A., Nikonov I.N., Filippova V.A., Laptev G.YU., Novikova N.I., Grozina A.A., Lenkova T.N., Manukyan V.A., Egorov I.A. Mikrobiologiya, 2016, 85(4): 472-480 CrossRef (in Russ.).
  29. Van Dijk A., Veldhuizen E.J.A., Kalkhove S.I.C., Tjeerdsma-van Bokhoven J.L.M., Romijn R.A., Haagsman H.P. The β-defensin gallinacin-6 is expressed in the chicken digestive tract and has antimicrobial activity against food-borne pathogens. Antimicrobial Agents and Chemotherapy, 2007, 51(3): 912-922 CrossRef
  30. Lu J., Idris U., Harmon B., Hofacre C., Maurer J.J., Lee M.D. Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Applied and Environmental Microbiology, 2003, 69(11): 6816-6824 CrossRef
  31. Jozefiak D., Rutkowski A., Kaczmarek S., Jensen B.B., Engberg R.M., Hojberg O. Effect of beta-glucanase and xylanase supplementation of barley- and rye-based diets on caecal microbiota of broiler chickens. British Poultry Science, 2010, 51(4): 546-557 CrossRef
  32. Li J., Hao H., Cheng G., Liu Ch., Ahmed S., Shabbir M.A.B., Hussain H.I., Dai M., Yuan Z. Microbial shifts in the intestinal microbiota of Salmonella infected chickens in response to enrofloxacin. Frontiers in Microbiology, 2017, 8: 1711 CrossRef
  33. Egorova A.V., Tuchemskii L.I., Emanuilova Zh.V., Efimov D.N. Zootekhniya, 2015, 6: 2-4 (in Russ.).
  34. Egorov I.A., Manukyan V.A., Lenkova T.N., Okolelova T.M., Lukashenko V.S., Shevyakov A.N., Ignatova G.V., Egorova T.V., Andrianova E.N., Rozanov B.L., Lysenko M.A., Egorova T.A., Grozina A.A., Laptev G.Yu., Nikonov I.N., Aleksandrova I.L., Il'ina L.A., Novikova N.I., Fisinin V.I. Metodika provedeniya nauchnykh i proizvodstvennykh issledovanii po kormleniyu sel'skokhozyaistvennoi ptitsy. Molekulyarno-geneticheskie metody opredeleniya mikroflory kishechnika [Methods of original research and farm trials of poultry feeding. Molecular genetic methods for intestinal microflora survey]. Sergiev Posad, 2013 (in Russ.).
  35. Printsipy i metody biokhimii i molekulyarnoi biologii. Perevod s angliiskogo /Pod redaktsiei K. Uilsona, Dzh. Uolkera [Principles and techniques of biochemistry and molecular biology. K. Wilson, J. Wolker (eds.)]. Moscow, 2013 (in Russ.).
  36. Singh K.M., Shah T., Deshpande S., Jakhesara S.J., Koringa P.G., Rank D.N., Joshi C.G. High through put 16S rRNA gene-based pyrosequencing analysis of the fecal microbiota of high FCR and low FCR broiler growers. Molecular Biology Reports, 2012, 39(12): 10595-10602 CrossRef
  37. Wei S., Morrison M., Yu Z. Bacterial census of poultry intestinal microbiome. Poultry Science, 2013, 92(3): 671-683 CrossRef
  38. Peterson E.H. Clostridium novyi isolated from chickens. Poultry Science, 1964, 43(4): 1062-1063 CrossRef
  39. Cooper K.K., Theoret J.R., Stewart B.A., Trinh H.T., Glock R.D., Songer J.G. Virulence for chickens of Clostridium perfringens isolated from poultry and other sources. Anaerobe, 2010, 16(3): 289-292 CrossRef
  40. Pielsticker C., Glünder G., Rautenschlein S. Colonization properties of Campylobacter jejuni in chickens. European Journal of Microbiology and Immunology, 2012, 2(1): 61-65 CrossRef
  41. Lan Y., Verstegen M., Tamminga S., Williams B. The role of the commensal gut microbial community in broiler chickens. Worlds Poultry Science Journal, 2005, 61: 95-104 CrossRef
  42. Wang Y., Sun J., Zhong H., Li N., Xu H., Zhu Q., Liu Y. Effect of probiotics on the meat flavour and gut microbiota of chicken. Scientific Reports, 2017, 7: 6400 CrossRef
  43. Smirnov V.V., Reznik S.R., Vasilevskaya I.A. Sporoobrazuyushchie aerobnye bakterii, proizvodyashchie biologicheski aktivnye veshchestva [Spore-forming aerobic bacteria able to produce biologically active substances]. Kiev, 1982 (in Russ.).
  44. Guo X., Li D., Lu W., Piao X., Chen X. Screening of Bacillus strains as potential probiotics and subsequent confirmation of the in vivo effectiveness of Bacillus subtilis MA139 in pigs. Antonie Van Leeuwenhoek, 2006, 90(2): 139-146 CrossRef

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)