PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2024.1.22eng

UDC: 633.491:581.6:613.2:577.1

Acknowledgements:
The review was prepared within the framework of state assignments “Creation of competitive, high-yielding varieties of grains, legumes, fodder, fruit and berry crops and potatoes of the world level based on promising genetic resources that are resistant to bio- and abiotic factors” (0532-2021-0008) and “Development of biological technologies for managing animal health and intravital formation of the quality of livestock and poultry products” (0532-2021-0009).

 

POTATO JUICE vs. TRADITIONAL POTATO USE — A NEW INSIGHT (review)

E.P. Shanina , D.A. Oberiukhtin, A.E. Chernitskiy

Ural Federal Agrarian Scientific Research Centre UB RAS, 112a, ul. Belinskogo, Ekaterinburg, 620142 Russia, e-mail shanina08@yandex.ru, oberuhtindenis@gmail.com, cherae@mail.ru (✉ corresponding author)

ORCID:
Shanina E.P. orcid.org/0009-0000-5818-3813
Chernitskiy A.E. orcid.org/0000-0001-8953-687X
Oberiukhtin D.A. orcid.org/0009-0006-1497-5740

Final revision received October 02, 2023
Accepted November 27, 2023

Traditionally, potatoes are consumed in a heat-treated form, e.g., boiled, fried, baked, with a significant part of its beneficial properties lost (A.D. Fabbri et al., 2015; J. Tian et al., 2016). Such processing greatly changes the mineral and vitamin composition of the product, the content of dietary fibre and the activity of secondary metabolites (J. Tian et al., 2016; A.T. Popova, 2019). Freshly squeezed potato juice can be a healthy alternative to heat-treated potatoes. Its use in folk medicine has been known since the early XIX century (J.E. Vlachojannis et al., 2010), while only a few scientific studies describe the physiological effects of potato juice consumption on experimental animals and on humans. One of the unique components of potato juice is resistant starch (L. Copeland et al., 2009). Resistant starch is not digested in the human body (P.J. Butterworth et al., 2011), positively affects the intestinal microbiota (I. Martínez et al., 2010), and normalizes insulin and glucagon-like peptide-1 in blood serum (A.A. Rashed et al., 2022). Of all plant proteins known to date, potato protein is the most balanced in essential amino acids and bioavailable to humans (M. Hussain et al., 2021). Its protease inhibitors are able to regulate digestion and have therapeutic effects in obesity (S. Komarnytsky et al., 2011; S. Nakajima et al, 2011), patatin has hypolipidemic (J. Wu et al., 2021), hypotensive (Y. Fu et al., 2019), antioxidant and antiproliferative properties (Y. Sun et al., 2013). Raw potatoes and their juice contain high concentrations of ascorbic acid (K.A. Beals et al., 2019), B vitamins, potassium, phosphorus, calcium, magnesium, iron and zinc (K. Zaheer et al., 2016; G.I. Piskun, 2023)  which are essential for good health. Potato varieties with purple-, red- and yellow-coloured tubers are the richest source of polyphenols, primarily phenolic acids and anthocyanins (E.P. Shanina, 2013; H. Akyol et al., 2016; I.V. Kim et al., 2020). The potato glycoalkaloids solanine and chaconine remain the most controversial in terms of possible health benefits. On the one hand, their average content in potato tubers is low to cause symptoms of poisoning in humans (K. Nishie et al, 1971). On the other hand, experiments with pure extracts of glycoalkaloids proved their anticholinergic, anticholinesterase (V.A. Voronov et al., 2023) and cytotoxic effects o (M. Friedman, 2015; D.K. Zhao et al., 2021; M.L. Lanteri et al., 2023). In the review, we discuss the likely danger of the identified effects for human health vs. the prospects for the immunodeficiency correction, as well as prevention and treatment of cancer diseases (D.K. Zhao et al., 2021; M.L. Lanteri et al., 2023). We also focus on current methods of biodegradation of potato glycoalkaloids (R.C. Hennessy et al., 2020). Selected studies on the biological effects of potato peel extract (N. Singh et al., 2008) and potato juice (R. Muceniece et al., 2008; V. Bartova et al., 2018) are described. The above information shows that potato juice contains all the useful substances of intact raw potatoes. The prospects for using potato juice in functional nutrition are obvious, but it remains to determine the optimal technological methods for its mass production while preserving the biological activity of the components.

Keywords: potatoes, potato juice, starch, protease inhibitors, patatin, polyphenols, flavonoids, phenolic acids, vitamin C, solanine.

 

REFERENCES

  1. Diet, nutrition and the prevention of chronic diseases: report of a Joint WHO/FAO Expert Consultation. WHO Technocal Report Series, 2003, 916: 1-149.
  2. Slavin J.L. Carbohydrates, dietary fiber, and resistant starch in white vegetables: links to health outcomes. Advances in Nutrition, 2013, 4(3): 351-355 CrossRef
  3. Ovando-Martínez M., Whitney K., Simsek S. Analysis of starch in food systems by high-performance size exclusion chromatography. Journal of Food Science, 2013, 78(2): 192-198 CrossRef
  4. Sergeeva E.M., Larichev K.T., Salina E.A., Kochetov A.V. Vavilovskiy zhurnal genetiki i selektsii, 2022, 26(3): 250-263 CrossRef (in Russ.).
  5. Filardi T., Panimolle F., Crescioli C., Lenzi A., Morano S. Gestational diabetes mellitus: the impact of carbohydrate quality in diet. Nutrients, 2019, 11(7): 1549 CrossRef
  6. Kolontay E.A., Karpenya A.E., Lysenko E.M. V sbornike: Sovremennye tekhnologii: tendentsii i perspektivy razvitiya [In: Modern technologies: trends and prospects]. Petrozavodsk, 2022: 169-173 (in Russ.).
  7. Gol’dshteyn V.G., Degtyarev V.A., Apshev Kh.Kh., Kovalenok V.A., Semenova A.V. Dostizheniya nauki i tekhniki APK, 2021, 35(10): 72-77 CrossRef (in Russ.).
  8. Alissa E.M., Ferns G.A. Dietary fruits and vegetables and cardiovascular diseases risk. Critical Reviews in Food Science and Nutrition, 2017, 57(9): 1950-1962 CrossRef
  9. Liu S. Intake of refined carbohydrates and whole grain foods in relation to risk of type 2 diabetes mellitus and coronary heart disease. Journal of the American College of Nutrition, 2002, 21(4): 298-306 CrossRef
  10. Locke A., Schneiderhan J., Zick S.M. Diets for health: goals and guidelines. American Family Physician, 2018, 97(11): 721-728.
  11. Navarre D.A., Brown C.R., Sathuvalli V. Potato vitamins, minerals and phytonutrients from a plant biology perspective. American Journal of Potato Research, 2019, 96: 111-126 CrossRef
  12. Alting A.C., Pouvreau L., Giuseppin M.L.F., van Nieuwenhuijzen N.H. Potato proteins. In: Woodhead publishing series in food science, technology and nutrition, handbook of food proteins. G.O. Phillips, P.A. William (eds.). Woodhead Publishing, 2011: 316-334 CrossRef
  13. Hajšlová J., Schulzová V., Slanina P., Janné K., Hellenäs K.E., Andersson C.H. Quality of organically and conventionally grown potatoes: four-year study of micronutrients, metals, secondary metabolites, enzymic browning and organoleptic properties. Food Additives and Contaminants, 2005, 22(6): 514-534 CrossRef
  14. Deryabina Yu.I., Isakova E.P., Gessler N.N., Marinichev A.A., Klyayn O.I. V sbornike nauchnykh statey po materialam X Mezhdunarodnogo simpoziuma «Fenol’nye soedineniya: svoystva, aktivnost’, innovatsii» [Proc. X Int. Symp. «Phenolic compounds: properties, activity, innovation»]. Moscow, 2018: 439-442 (in Russ.).
  15. Chrubasik S., Boyko T., Filippov Y., Torda T. Further evidence on the effectiveness of potato juice in dyspeptic complaints. Phytomedicine, 2006, 13(8): 596-597 CrossRef
  16. Vlachojannis J.E., Cameron M., Chrubasik S. Medicinal use of potato-derived products: a systematic review. Phytotherapy Research, 2010, 24(2): 159-162 CrossRef
  17. Vaaler S., Hanssen K.F., Aagenaes O. The effect of cooking upon the blood glucose response to ingested carrots and potatoes. Diabetes Care, 1984, 7(3): 221-223 CrossRef
  18. Fabbri A.D.T., Crosby G.A. A review of the impact of preparation and cooking on the nutritional quality of vegetables and legumes. International Journal of Gastronomy and Food Science, 2015, 3: 2-11 CrossRef
  19. Tian J., Chen J., Ye X., Chen S. Health benefits of the potato affected by domestic cooking: a review. Food Chemistry, 2016, 202: 165-175 CrossRef
  20. Beals K.A. Potatoes, nutrition and health. American Journal of Potato Research, 2019, 96(103): 102-110 CrossRef
  21. Mazhaeva T.V., Dubenko S.E., Grashchenkov D.V., Sutunkova M.P. Gigienicheskaya otsenka pishchevoy i biologicheskoy tsennosti ratsionov pitaniya /Pod redaktsiey V.B. Gurvicha [Hygienic assessment of the nutritional and biological value of food rations. V.B. Gurvich (ed.)]. Ekaterinburg, 2020 (in Russ.).
  22. Copeland L., Blazek J., Salman H., Tang M.C. Form and functionality of starch. Food Hydrocolloids, 2009, 23(6): 1527-1534 CrossRef
  23. Butterworth P.J., Warren F.J., Ellis P.R. Human a-amylase and starch digestion: an interesting marriage. Starch/Stärke, 2011, 63(7): 395-405 CrossRef
  24. Mishra S., Monro J., Hedderley D. Effect of processing on slowly digestible starch and resistant starch in potato. Starch/Stärke, 2008, 60(9): 500-507 CrossRef
  25. Piskun G.I. Pishchevaya promyshlennost’: nauka i tekhnologii, 2023, 16(2): 93-97 (in Russ.).
  26. Martínez I., Kim J., Duffy P.R., Schlegel V.L., Walter J. Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLoS One, 2010, 5(11): e15046 CrossRef
  27. Rashed A.A., Saparuddin F., Rathi D.-N.G., Nasir N.N.M., Lokman E.F. Effects of resistant starch interventions on metabolic biomarkers in pre-diabetes and diabetes adults. Frontiers in Nutrition, 2022, 8: 793414 CrossRef
  28. Young V.R., Pellett P.L. Plant proteins in relation to human protein and amino acid nutrition. The American Journal of Clinical Nutrition, 1994, 59(5): 1203-1212 CrossRef
  29. Adeva-Andany M.M., Rañal-Muíño E., Vila-Altesor M., Fernández-Fernández C., Funcasta-Calderón R., Castro-Quintela E. Dietary habits contribute to define the risk of type 2 diabetes in humans. Clinical Nutrition ESPEN, 2019, 34: 8-17 CrossRef
  30. Aschemann-Witzel J., Gantriis R.F., Fraga P., Perez-Cueto F.J.A. Plant-based food and protein trend from a business perspective: markets, consumers, and the challenges and opportunities in the future. Critical Reviews in Food Science and Nutrition, 2021, 61(18): 3119-3128 CrossRef
  31. Sha L., Xiong Y.L. Plant protein-based alternatives of reconstructed meat: Science, technology, and challenges. Trends in Food Science & Technology, 2020, 102: 51-61 CrossRef
  32. Friedman M. Nutritional value of proteins from different food sources. A review. Journal of Agricultural and Food Chemistry, 1996, 44(1): 6-29 CrossRef
  33. Layman D.K., Rodriguez N. Egg protein as a source of power, strength, and energy. Nutrition Today, 2009, 44(1): 43-48 CrossRef
  34. Hussain M., Qayum A., Xiuxiu Z., Liu L., Hussain K., Yue P., Yue S., Koko M., Hussain A., Li X. Potato protein: an emerging source of high quality and allergy free protein, and its possible future based products. Food Research International, 2021, 148: 110583 CrossRef
  35. Shanina E.P. V sbornike: Sostoyanie i perspektivy innovatsionnogo razvitiya sovremennoy industrii kartofelya [In: State and prospects for innovative development of the modern potato industry]. Cheboksary, 2013: 35-40 (in Russ.).
  36. Shanina E.P. V sbornike: Sovremennoe sostoyanie i perspektivy razvitiya kartofelevodstva [In: Current state and prospects for the development of potato growing]. Cheboksary, 2012: 35-38 (in Russ.).
  37. Waglay A., Karboune S., Alli I. Potato protein isolates: recovery and characterization of their properties. Food Chemistry, 2014, 142: 373-382 CrossRef
  38. Pouvreau L., Gruppen H., Piersma S.R., van den Broek L.A.M., van Koningsveld G.A., Voragen A.G.J. Relative abundance and inhibitory distribution of protease inhibitors in potato juice from cv. Elkana. Journal of Agricultural and Food Chemistry, 2001, 49(6): 2864-2874 CrossRef
  39. Komarnytsky S., Cook A., Raskin I. Potato protease inhibitors inhibit food intake and increase circulating cholecystokinin levels by a trypsin-dependent mechanism. International Journal of Obesity, 2011, 35: 236-243 CrossRef
  40. Nakajima S., Hira T., Tsubata M., Takagaki K., Hara H. Potato extract (Potein) suppresses food intake in rats through inhibition of luminal trypsin activity and direct stimulation of cholecystokinin secretion from enteroendocrine cells. Journal of Agricultural and Food Chemistry, 2011, 59(17): 9491-9496 CrossRef
  41. Li Q., Huang L., Luo Z., Tamer T.M. Stability of trypsin inhibitor isolated from potato fruit juice against pH and heating treatment and in vitro gastrointestinal digestion. Food Chemistry, 2020, 328: 127152 CrossRef
  42. Pathak V., Flatt P.R., Irwin N. Cholecystokinin (CCK) and related adjunct peptide therapies for the treatment of obesity and type 2 diabetes. Peptides, 2018, 100: 229-235 CrossRef
  43. Miller L.J., Harikumar K.G., Wootten D., Sexton P.M. Roles of cholecystokinin in the nutritional continuum. Physiology and potential therapeutics. Frontiers in Endocrinology, 2021, 12: 684656 CrossRef
  44. Zhang D.-q., Mu T.-h., Sun H.-n., Chen J.-w., Zhang M. Comparative study of potato protein concentrates extracted using ammonium sulfate and isoelectric precipitation. International Journal of Food Properties, 2017, 20(9): 2113-2127 CrossRef
  45. Liyanage R., Minamino S., Nakamura Y., Shimada K., Sekikawa M., Sasaki K., Ohba K., Jayawardana B.C., Shibayama S., Fukushima M. Preparation method modulates hypocholesterolaemic responses of potato peptides. Journal of Functional Foods, 2010, 2(2): 118-125 CrossRef
  46. Pots A.M., Gruppen H., van Diepenbeek R., van der Lee J.J., van Boekel M.A., Wijngaards G., Voragen A.G. The effect of storage of whole potatoes of three cultivars on the patatin and protease inhibitor content; a study using capillary electrophoresis and MALDI-TOF mass spectrometry. Journal of the Science of Food and Agriculture, 1999, 79(12): 1557-1564 CrossRef
  47. Wu J., Wu Q., Yang D., Zhou M., Xu J., Wen Q., Cui Y., Bai Y., Xu S., Wang Z., Wang S. Patatin primary structural properties and effects on lipid metabolism. Food Chemistry, 2021, 344: 128661 CrossRef
  48. Sun Y., Jiang L., Wei D. Partial characterization, in vitro antioxidant and antiproliferative activities of patatin purified from potato fruit juice. Food and Function, 2013, 4(10): 1502-1511 CrossRef
  49. Fu Y., Liu W.-N., Soladoye O.P. Towards potato protein utilisation: Insights into separation, functionality and bioactivity of patatin. International Journal of Food Science & Technology, 2019, 55(6): 2314-2322 CrossRef
  50. Fu Y., Alashi A.M., Young J.F., Therkildsen M., Aluko R.E. Enzyme inhibition kinetics and molecular interactions of patatin peptides with angiotensin I-converting enzyme and renin. International Journal of Biological Macromolecules, 2017, 101: 207-213 CrossRef
  51. Balykova L.A., Leont’eva I.V., Krasnopol’skaya A.V., Sadykova D.I., Mashkina L.S., Chegodaeva I.Yu., Khabibrakhmanova Z.R., Slastnikova E.S., Galimova L.F., Ushakova S.A. Voprosy sovremennoy pediatrii, 2021, 20(4): 271-281 (in Russ.).
  52. Kowalczewski P.Ł., Olejnik A., Białas W., Kubiak P., Siger A., Nowicki M., Lewandowicz G. Effect of thermal processing on antioxidant activity and cytotoxicity of waste potato juice. Open Life Sciences, 2019, 14(1): 150-157 CrossRef
  53. Infant formula for cow's milk protein allergic infants. Publ. Number WO/2018/115340. Publ. Date 28.06.2018. Int. Appl. No. PCT/EP2017/084198. Int. Filing Date 21.12.2017. Available: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2018115340. No date.
  54. Maillard L.C. Action des acidesamines sur les sucres: formation des melanoidines par voie methodique. Comptes Rendus de l’Academie des Sciences, 1912, 154: 66-68.
  55. Murata M. Browning and pigmentation in food through the Maillard reaction. Glycoconjugate Journal, 2021, 38: 283-292 CrossRef
  56. Zaheer K., Akhtar M.H. Potato production, usage, and nutrition — a review. Critical Reviews in Food Science and Nutrition, 2016, 56(5): 711-721 CrossRef
  57. Friedman M. Chemistry, biochemistry, and safety of acrylamide. A review. Journal of Agricultural and Food Chemistry, 2003, 51(16): 4504-4526 CrossRef
  58. Koszucka A., Nowak A., Nowak I., Motyl I. Acrylamide in human diet, its metabolism, toxicity, inactivation and the associated European Union legal regulations in food industry. Critical Reviews in Food Science and Nutrition, 2020, 60(10): 1677-1692 CrossRef
  59. Dobrowolski P., Huet P., Karlsson P., Eriksson S., Tomaszewska E., Gawron A., Pierzynowski S.G. Potato fiber protects the small intestinal wall against the toxic influence of acrylamide. Nutrition, 2012, 28(4): 428-435 CrossRef
  60. Lee S., Choi Y., Jeong H.S., Lee J., Sung J. Effect of different cooking methods on the content of vitamins and true retention in selected vegetables. Food Science and Biotechnology, 2018, 27: 333-342 CrossRef
  61. Metodicheskie rekomendatsii 2.3.1.0253-21. Normy fiziologicheskikh potrebnostey v energii i pishchevykh veshchestvakh dlya razlichnykh grupp naseleniya Rossiyskoy Federatsii [Methodological recommendations 2.3.1.0253-21. Norms of physiological needs for energy and nutrients for various groups of the population of the Russian Federation]. Moscow, 2021 (in Russ.).
  62. Popova A.T. The effect of heating on the vitamin C content of selected vegetables. World Journal of Advanced Research and Reviews, 2019, 03(03): 027-032 CrossRef
  63. Liu R.H. Health-promoting components of fruits and vegetables in the diet. Advances in Nutrition, 2013, 4(3): 384-392 CrossRef
  64. Friedman M. Chemistry, biochemistry and dietary role of potato polyphenols. a review. Journal of Agricultural and Food Chemistry, 1997, 45(5): 1523-1540 CrossRef
  65. Zaytseva S.M., Doan T.T., Kalashnikova E.A., Kirakosyan R.N. Aktual’nye voprosy veterinarnoy biologii, 2018, 3(39): 52-58 (in Russ.).
  66. Luca S.V., Macovei I., Bujor A., Miron A., Skalicka-Woźniak K., Aprotosoaie A.C., Trifan A. Bioactivity of dietary polyphenols: the role of metabolites. Critical Reviews in Food Science and Nutrition, 2020, 60(4): 626-659 CrossRef
  67. Chiu H.-F., Venkatakrishnan K., Golovinskaia O., Wang C.-K. Gastroprotective effects of polyphenols against various gastro-intestinal disorders: a mini-review with special focus on clinical evidence. Molecules, 2021, 26(7): 2090 CrossRef
  68. Zhang L.-X., Li C.-X., Kakar M.U., Khan M.S., Wu P.F., Amir R.M., Dai D.F., Naveed M., Li Q.Y., Saeed M., Shen J.-Q., Rajput S.A., Li J.-H. Resveratrol (RV): A pharmacological review and call for further research. Biomedicine & Pharmacotherapy, 2021, 143: 112164 CrossRef
  69. Azarova O.V., Galaktionova L.P. Khimiya rastitel’nogo syr’ya, 2012, 4: 61-78 (in Russ.).
  70. Heim K.E., Tagliaferro A.R., Bobilya D.J. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. The Journal of Nutritional Biochemistry, 2002, 13(10): 572-584 CrossRef
  71. Pisarev D.I., Novikov O.O., Selyutin O.A., Pisareva N.A. Aktual’nye problemy meditsiny, 2012, 10(129): 17-24 (in Russ.).
  72. Chiryapkin A.S. Obzor biologicheskoy aktivnosti flavonoidov: kvertsetina i kempferola. Juvenis Scientia, 2023, 9(2): 5-20 CrossRef (in Russ.).
  73. Zhai K., Mazurakova A., Koklesova L., Kubatka P., Büsselberg D. Flavonoids synergistically enhance the anti-glioblastoma effects of chemotherapeutic drugs. Biomolecules, 2021, 11(12): 1841 CrossRef
  74. Akyol H., Riciputi Y., Capanoglu E., Caboni M.F., Verardo V. Phenolic compounds in the potato and its byproducts: an overview. International Journal of Molecular Sciences, 2016, 17(6): 835 CrossRef
  75. Kim I.V., Volkov D.I., Zakharenko V.M., Zakharenko A.M., Golohvast K.S., Klykov A.G. Composition and quantification of antocians in healthy-diet potato (Solanum tuberosum L.) varieties for growing and selection in the Russian Far East. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2020, 55(5): 995-1003 CrossRef
  76. Ginzberg I., Tokuhisa J.G., Veilleux R.E. Potato steroidal glycoalkaloids: biosynthesis and genetic manipulation. Potato Research, 2009, 52: 1-15 CrossRef
  77. Razgonova M.P., Kulikova V.I., Khodaeva V.P., Zakharenko A.M., Golokhvast K.S. Vestnik KrasGAU, 2023, 2(191): 81-87 (in Russ.).
  78. Baur S., Frank O., Hausladen H., Hückelhoven R., Hofmann T., Eisenreich W., Dawid C. Biosynthesis of a-solanine and a-chaconine in potato leaves (Solanum tuberosum L.) — a 13CO2 study. Food Chemistry, 2021, 365: 130461 CrossRef
  79. Pan B., Zhong W., Deng Z., Lai C., Chu J., Jiao G., Liu J., Zhou Q. Inhibition of prostate cancer growth by solanine requires the suppression of cell cycle proteins and the activation of ROS/P38 signaling pathway. Cancer Medicine, 2016, 5(11): 3214-3222 CrossRef
  80. Kuete V. Health effects of alkaloids from african medicinal plants. In: Toxicological survey of African medicinal plants. Elsevier, 2014: 611-633 CrossRef
  81. Friedman M., Roitman J.N., Kozukue N. Glycoalkaloid and calystegine contents of eight potato cultivars. Journal of Agricultural and Food Chemistry, 2003, 51(10): 2964-2973 CrossRef
  82. Nishie K., Gumbmann M.R., Keyl A.C. Pharmacology of solanine. Toxicology and Applied Pharmacology,1971,19(1): 81-92 CrossRef
  83. Ivanova K.A. Vavilovskiy zhurnal genetiki i selektsii, 2018, 22(1): 25-34 CrossRef (in Russ.).
  84. Dhalsamant K., Singh C.B., Lankapalli R. A review on greening and glycoalkaloids in potato tubers: potential solutions. Journal of Agricultural and Food Chemistry, 2022, 70(43): 13819-13831 CrossRef
  85. Lygin S.A., Solominova L.V. Innovatsii v nauke, 2017, 10(71): 16-19 (in Russ.).
  86. Voronov V.A., Pozdnyakov D.I., Zolotykh D.S., Dayronas Zh.V., Chernikov M.V. Vestnik novykh meditsinskikh tekhnologiy, 2023, 30(1): 75-79 (in Russ.).
  87. Lanteri M.L., Silveyra M.X., Morán M.M., Boutet S., Solis-Gozar D.D., Perreau F., Andreu A.B. Metabolite profiling and cytotoxic activity of Andean potatoes: Polyamines and glycoalkaloids as potential anticancer agents in human neuroblastoma cells in vitro. Food Research International, 2023, 168: 112705 CrossRef
  88. Zhao D.-K., Zhao Y., Chen S.-Y., Kennelly E.J. Solanum steroidal glycoalkaloids: structural diversity, biological activities, and biosynthesis. Natural Product Report, 2021, 38(8): 1423-1444 CrossRef
  89. Friedman M. Chemistry and anticarcinogenic mechanisms of glycoalkaloids produced by eggplants, potatoes, and tomatoes. Journal of Agricultural and Food Chemistry, 2015, 63(13): 3323-3337 CrossRef
  90. Hennessy R.C., Nielsen S.D., Greve-Poulsen M., Larsen L.B., Sørensen O.B., Stougaard P. Discovery of a bacterial gene cluster for deglycosylation of toxic potato steroidal glycoalkaloids a-chaconine and a-solanine. Journal of Agricultural and Food Chemistry, 2020, 68(5): 1390-1396 CrossRef
  91. alpha-Solanine. Available: https://pubchem.ncbi.nlm.nih.gov/compound/alpha-Solanine. Accessed: 08/30/2023.
  92. Solanidine. Available: https://pubchem.ncbi.nlm.nih.gov/compound/Solanidine. Accessed: 08/30/2023.
  93. Singh N., Kamath V., Narasimhamurthy K., Rajini P.S. Protective effect of potato peel extract against carbon tetrachloride-induced liver injury in rats. Environmental Toxicology and Pharmacology, 2008, 26(2): 241-246 CrossRef
  94. Muceniece R., Saleniece K., Krigere L., Rumaks J., Dzirkale Z., Mezhapuke R., Kviesis J., Mekss P., Klusa V., Schiöth H.B., Dambrova M. Potato (Solanum tuberosum) juice exerts an anticonvulsant effect in mice through binding to GABA receptors. Planta Medica, 2008, 74(5): 491-496 CrossRef
  95. Bártová V., Bárta J., Vlačihová A., Šedo O., Zdráhal Z., Konečná H., Stupková A., Švajner J. Proteomic characterization and antifungal activity of potato tuber proteins isolated from starch production waste under different temperature regimes. Applied Microbiology and Biotechnology, 2018, 102(24): 10551-10560 CrossRef
  96. Chrubasik S., Chrubasik C., Torda T., Madisch A. Efficacy and tolerability of potato juice in dyspeptic patients: a pilot study. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 2006, 13(1-2): 11-15 CrossRef
  97. GOST R 52349-2005. Produkty pishchevye. Produkty pishchevye funktsional’nye. Terminy i opredeleniya [GOST R 52349-2005. Food products. Functional food products. Terms and Definitions]. Moscow, 2005 (in Russ.).
  98. Kapitonova E.K. Pishchevaya promyshlennost’: nauka i tekhnologii, 2012, 2(16): 13-19 (in Russ.).
  99. Kapitonova E.K. Voprosy detskoy dietologii, 2013, 11(4): 51-55 (in Russ.).
  100. Shilov M.P., Shilova T.N., Dmitriev A.V. Nauchnye trudy Cheboksarskogo filiala Glavnogo botanicheskogo sada im. N.V. Tsitsina RAN, 2018, 11: 137-153 (in Russ.).
  101. Makusheva T.S., Galushina E.N., Apanovich M.S. Vestnik NGUEU, 2019, 2: 85-93 (in Russ.).
  102. Opredelenie bezopasnosti i effektivnosti biologicheski aktivnykh dobavok k pishche: metodicheskie ukazaniya [Determination of the safety and effectiveness of bioactive food additives: guidelines]. Moscow, 1999 (in Russ.).

 

back

 


CONTENTS

 

 

Full article PDF (Rus)