PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2024.1.39eng

UDC: 633.18+635.629+582.663]:581.192.2

Acknowledgements:
Supported financially by grant from the Innovation Promotion Fund (Start 2, No. 4654ГС2/48601)

 

PLANT ANTIOXIDANTS AND THEIR NON-TRADITIONAL SOURCES (review)

Yu.K. Goncharova1, 3 , S.V. Goncharov2, E.M. Kharitonov1, Yu.V. Fotev4, V.V. Simonova1, N.А. Ochkas1, 3

1Federal Rice Research Center, 3, Belozernii, Krasnodar, Russia 350921, e-mail yuliya_goncharova_20@mail.ru (✉ corresponding author), evgeniyharitonov46@mail.ru,
viktoriasimonovaa@mail.ru, ochkasnikolay@mail.ru;
2Trubilin Kuban State Agrarian University, 13, ul. Kalinina, Krasnodar, 350044 Russia, e-mail serggontchar@mail.ru;
3Aratay LLC, 15/1, ul. Kotlarova, Krasnodar, 350016 Russia, e-mail yuliya_goncharova_20@mail.ru;
4Central Siberian Botanical Garden SB RAS, 101, ul. Zolotodolinskaya, Novosibirsk, 630090 Russia, e-mail fotev_2009@mail.ru

ORCID:
Goncharova Yu.K. orcid.org/0000-0003-2643-7342
Fotev Yu.V. orcid.org/0000-0002-0299-3689
Goncharov S.V. orcid.org/0000-0002-6317-7173
Simonova V.V. orcid.org/0000-0001-6734-616Х
Kharitonov E.M. orcid.org/0000-0002-4049-6173
Ochkas N.А. orcid.org/0000-0003-4852-3356

Final revision received October 5, 2022
Accepted February 20, 2023

The viability of eukaryotes largely depends on a biochemical defense system that protects the body from damage. Antioxidants that neutralize free radicals are significant components of biochemical protective system (M.G. Uzbekov, 2014). Oxidative stress underlies many diseases, e.g., oncological, rheumatoid, bronchopulmonary, cardiovascular, and premature aging (S. Miwa et al., 2016; J.G. Geisler, 2019). There are more than 5,000 antioxidants which differ in chemical composition, antiradical and antiproliferative activity. Many studies show the synergism or additive effect of antioxidants (V. Polonsky et al., 2018). That is, to effectively protect the body, the range of antioxidants consumed must be quite broad. In this regard, it becomes urgent to search for new sources of biologically active substances and increase their content in already cultivated species. This work provides a classification of antioxidants. Among exogenous ones, carotenoids, polyphenols (flavonoids), and trace elements are considered in more detail. The various antioxidant activities of these substances are considered. Flavonoids are the most significant antioxidants. The antiradical activity of flavonoids can be 50 times higher than that of many plant substances, vitamins E and C are notably inferior to them (Y. Yao et al., 2010). Black grain rice varieties are rich sources of flavonoids (U.K.S. Kushwaha, 2016). Carotenoids are another effective antioxidants, the distinctive feature of which is interaction with other substances of this nature which increases the biological activity of the compounds (W. Stahl et al., 2004; С. Hu et al., 2020). Sources with high antioxidant potential and significant accumulation of carotenoids can be red grain varieties of rice, momordica, amaranth (Yu. Fotev et al., 2018; D. Shafigullin et al., 2018). The intraspecific diversity observed at the phenotypic level in terms of color characteristics is associated with both regulatory and structural genes (E.K. Khlestkina et al., 2014). The increased content of proanthocyanidins in the seed coat determines resistance to germination on the root, and the presence of anthocyanins contributes to better preservation of seeds after long-term storage and increased plant resistance to stress (T.L. Korotenko, 2018). Antioxidants increase plant resistance to biotic and abiotic stresses. However, this aspect has not been sufficiently studied in rice varieties with colored pericarp. The study of genetic mechanisms that control plant color traits is relevant in connection with the antioxidant and antimicrobial properties of pigments and their colorless precursors (Y. Qin et al., 2018). These compounds provide the prevention of cancer, reduce the risk of cardiovascular diseases, atherosclerosis, type 2 diabetes, increase immunity, improve the synthesis of visual pigments, activate metabolic processes, and slow down aging (C. Xu et al., 2017). Color variations and grain quality traits in rice samples is controled by 41 loci. The Ra (Prp-b for varieties with purple pericarp) and Rc (brown pericarp and aleurone layer) genes mainly contribute to the phenotypic effect on rice grain color and nutritional quality (Y. Shao et al., 2011). These genes are located on chromosomes 9, 10 and 8 in the regions of the markers RM228 (amplification product size 90-154 bp), RM339 (166-148 bp), and RM316 (160-210 bp) location (T. Furukawa et al., 2007). Molecular characterization of key genes involved in the biosynthesis of the above compounds will allow breeders to control and accelerate selection for color traits, important for improving the nutritional value of functional products.

Keywords: rice, momordica, stained pericarp, flavonoids, carotenoids, antioxidants, anthocyans, regulatory genes, structural genes, marker-assised selection, SSR markers. 

 

REFERENCES

  1. Uzbekov M.G. Sotsial’naya i klinicheskaya psikhiatriya, 2014, 24(4): 97-103 (in Russ.).
  2. GriffithsK., Aggarwal B.B., Singh R.B., Buttar H.S., Wilson D., De Meester F. Food antioxidants and their anti-inflammatory properties: a potential role in cardiovascular diseases and cancer Diseases, 2016, 4(3): 28 CrossRef.
  3. Liu Z., Ren Z., Zhang J., Chuang C.-C., Kandaswamy E., Zhou T., Zuo L. Role of ROS and nutritional antioxidants in human diseases.Frontiers in Physiology, 2018, 9: 477 CrossRef
  4. Yeung A.W.K., Tzvetkov N.T., El-Tawil O.S., Bungǎu S.G., Abdel-Daim M.M., Atanasov A.G. Antioxidants: scientific literature landscape analysis. Oxidative Medicine and Cellular Longevity, 2019, 2019: 8278454 CrossRef
  5. Herranz N., Gil J. Mechanisms and functions of cellular senescence. J. Clin. Invest., 2018, 128: 1238-1246 CrossRef
  6. Liao N., Shi Y., Zhang C., Zheng Y., Wang Y., Zhao B., Zeng Y., Liu X., Liu J. Antioxidants inhibit cell senescence and preserve stemness of adipose tissue derived stem cells by reducing ROS generation during long-term in vitroexpansion. Stem Cell Research & Therapy, 2019, 10: 306 CrossRef
  7. Rhinn M., Ritschka B., Keyes W.M. Cellular senescence in development, regeneration and disease. Development, 2019, 146(20): dev151837 CrossRef
  8. Dorovskikh V.A., Tseluyko S.S., Simonova N.V., Anokhina R.A. V mire antioksidantov [In the world of antioxidants]. Blagoveshchensk, 2012 (in Russ.).
  9. Meo S.D., Reed T.T., Venditti P., Victor V.M. Role of ROS and RNS sources in physiological and pathological conditions. Oxidative Medicine and Cellular Longevity, 2016, 2016: 1245049 CrossRef
  10. Roy J., Galano J.-M., Durand T., Le Guennec J.-Y., Lee J.C. Physiological role of reactive oxygen species as promoters of natural defenses. FASEB J., 2017,31(9): 3729-3745 CrossRef
  11. Ansurudeen I., Sunkari V.G., Grünler J., Peters V., Schmitt C.P., Catrina S.B., Brismar K., Forsberg E.A. Carnosine enhances diabetic wound healing in the db/db mouse model of type 2 diabetes. Amino Acids, 2012, 43: 127-134 CrossRef
  12. Miwa S., Czapiewski R., Wan T., Bell A., Hill K.N., Zglinicki T., Saretzki G. Decreased mTOR signalling reduces mitochondrial ROS in brain via accumulation of the telomerase protein TERT within mitochondria. Aging, 2016, 8: 2551-2567 CrossRef
  13. Geisler J.G. 2,4 Dinitrophenol as medicine. Cells, 2019, 8(3): 280 CrossRef
  14. Trnka J., Elkalaf M., Andel M. Lipophilic triphenylphosphonium cations inhibit mitochondrial electron transport chain and induce mitochondrial proton leak. PLoS One, 2015, 10(4): e0121837 CrossRef
  15. Munoz-Lorente M.A., Cano-Martin A.C., Blasco M.A. Mice with hyper-long telomeres show less metabolic aging and longer lifespans. Nature Communications, 2019, 10: 4723 CrossRef
  16. Green P.D., Sharma N.K., Santos J.H. Telomerase impinges on the cellular response to oxidative stress through mitochondrial ROS-mediated regulation of autophagy. Int. J. Mol. Sci., 2019,20(6): 1509 CrossRef
  17. Monaghan P., Costantini D. Free radicals — an evolutionary perspective. In: Systems biology of free radicals and antioxidants. Springer Verlag, Berlin, Heidelberg, 2014: 39-64 CrossRef
  18. Perry R.J., Zhang D., Zhang X.M., Boyer J.L., Shulman G.I. Controlled-release mitochondrial protonophore reverses diabetes and steatohepatitis in rats. Science,2015, 347(6227), 1253-1256 CrossRef
  19. Chouchani E.T., Kazak L., Jedrychowski M.P., Lu G.Z., Erickson B.K., Szpyt J., Pierce K.A., Laznik-Bogoslavski D., Vetrivelan R., Clish C.B., Robinson A.J., Gygi S.P., Spiegelman B.M. Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1. Nature,2016, 532(7597), 112-116 CrossRef
  20. Free radicals, aging, and degenerative diseases. J.E. Johnson Jr., R. Walford, D. Harman, J. Miquel (eds.). Liss Cop., New York, 1986.
  21. Andreyev A.Y., Tsui H.S., Milne G.L., Shmanai V.V., Bekish A.V., Fomich M.A., Pham M.N., Nong Y., Murphy A.N., Clarke C.F., Shchepinov M.S. Isotope-reinforced polyunsaturated fatty acids protect mitochondria from oxidative stress. Free Radical Biology and Medicine, 2015, 82: 63-72 CrossRef
  22. Beaudoin-Chabot C., Wang L., Smarun A.V., Vidović D., Shchepinov M.S., Thibault G. Deuterated polyunsaturated fatty acids reduce oxidative stress and extend the lifespan of C. elegans. Front. Physiol., 2019, 10: 641 CrossRef
  23. Li D., Wang P., Luo Y., Zhao M., Chen F. Health benefits of anthocyanins and molecular mechanisms: update from recent decade. Critical Reviews in Food Science and Nutrition, 2017, 57(8): 1729-1741 CrossRef
  24. Strygina K.V., Börner A., Khlestkina E.K. Identification and characterization of regulatory network components for anthocyanin synthesis in barley aleurone. BMC Plant Biol., 2017, 17(Suppl 1): 184 CrossRef
  25. Jiang W., Liu T., Nan W., Jeewani D.C., Niu Y., Li C., Wang Y., Shi X., Wang C., Wang J., Li Y., Gao X., Wang Z. Two transcription factors TaPpm1 and TaPpb1 co-regulate anthocyanin biosynthesis in purple pericarps of wheat. Journal of Experimental Botany, 2018, 69(10): 2555-2567 CrossRef
  26. Polonskiy V.I., Loskutov I.G., Sumina A.V. Vavilovskiy zhurnal genetiki i selektsii, 2018, 22(3): 343-352 CrossRef (in Russ.).
  27. Stahl W., Sies S. Antioxidant activity of carotenoids. Molecular Aspects of Medicine, 2004, 24(6): 345-351 CrossRef
  28. Maoka T. Carotenoids as natural functional pigments. J. Nat. Med., 2020, 74: 1-16 CrossRef
  29. Shakhmardanova S.A. Gulevskaya O.N., Seletskaya V.V., Zelenskaya A.V., Khananashvili Ya.A., Nefedov D.A., Galenko-Yaroshevskiy P.A. Antioksidanty: klassifikatsiya, farmakoterapevticheskie svoystva, ispol’zovanie v prakticheskoy meditsine [Antioxidants: classification, pharmacotherapeutic properties, use in practical medicine]. Krasnodar, 2016, 3: 4-15 (in Russ.).
  30. Sui X., Zhang Y., Zhou W. In vitro and in silico studies of the inhibition activity of anthocyanins against porcine pancreatic a-amylase. Journal of Functional Foods, 2016, 21: 50-57 CrossRef
  31. Oliveira H., Roma-Rodrigues C., Santos A., Veigas B., Brás N., Faria A., Calhau C., de Freitas V., Baptista P.V., Mateus N., Fernandes A.R., Fernandes I. GLUT1 and GLUT3 involvement in anthocyanin gastric transport-Nanobased targeted approach. Sci. Rep., 2019, 9(1): 1-14 CrossRef
  32. Il’ina I.G., Rudakova I.P., Samylina I.A. Farmatsiya, 2013, 8: 3-6 (in Russ.).
  33. Rehman S.U., Shah S.A., Ali T., Chung J.I., Kim M.O. Anthocyanins reversed D-galactose-induced oxidative stress and neuroinflammation mediated cognitive impairment in adult rats. Molecular Neurobiology,2017, 54(1): 255-271 CrossRef
  34. Sandoval-Ramírez B.A., Catalán Ú., Fernández-Castillejo S., Rubió L., Macià A., Solà R. Anthocyanin tissue bioavailability in animals: possible implications for human health. A systematic review. J. Agric. Food Chem., 2018, 66(44): 11531-11543 CrossRef
  35. Zhang B., Schrader A. Transparent testa glabra 1-dependent regulation of flavonoid biosynthesis. Plants, 2017, 6(4): 65 CrossRef
  36. Sun X.-H., Zhou T.-T., Wei C.-H., Lan W.-Q., Zhao Y., Pan Y.-J., Wu V.C.H. Antibacterial effect and mechanism of anthocyanin rich Chinese wild blueberry extract on various foodborne pathogens. Food Control, 2018, 94: 155-161 CrossRef
  37. Sangsefidi Z.S., Hosseinzadeh M., Ranjbar A.M., Akhondi-Meybodi M., Fallahzadeh H., Mozaffari-Khosravi H. The effect of total anthocyanin-base standardized (Cornus mas L.) fruit extract on liver function, tumor necrosis factor α, malondealdehyde, and adiponectin in patients with non-alcoholic fatty liver: a study protocol for a double-blind randomized clinical trial. Nutr. J., 2019, 18(1): 39 CrossRef
  38. Maslennikov P.V., Chupakhina G.N., Skrypnik L.N., Feduraev P.V., Seledtsov V.I. Vestnik Baltiyskogo federal’nogo universiteta im. I. Kanta, 2014, 7: 110-120 (in Russ.).
  39. Tsuda T. Recent progress in anti-obesity and anti-diabetes effect of berries. Antioxidants, 2016, 5(2): 13 CrossRef
  40. Wallace T.C., Slavin M., Frankenfeld C.L. Systematic review of anthocyanins and markers of cardiovascular disease. Nutrients, 2016, 8(1): 32-45 CrossRef
  41. Chupakhina G.N., Maslennikov P.V., Skrypnik L.N. Prirodnye antioksidanty (ekologicheskiy aspekt) [Natural antioxidants (environmental aspect)]. Kaliningrad, 2011 CrossRef (in Russ.).
  42. Bulgakov V.P., Avramenko T.V., Tsitsiashvili G.S. Critical analysis of protein signaling networks involved in the regulation of plant secondary metabolism: focus on anthocyanins. Critical Reviews in Biotechnology, 2017, 37(6): 685-700 CrossRef
  43. Celli G.B., Ghanem A., Brooks M.S. A theoretical physiologically based pharmacokinetic approach for modeling the fate of anthocyanins in vivo. Critical Reviews in Food Science and Nutrition, 2017, 57(15): 3197-3207 CrossRef
  44. Gins M.S., Gins V.K., Pivovarov V.F., Kononkov P.F. Rossiyskaya sel’skokhozyaystvennaya nauka, 2016, 5: 17-20 (in Russ.).
  45. Kent K., Charlton K., Roodenrys S., Batterham M., Potter J., Traynor V., Gilbert H., Morgan O., Richards R. Consumption of anthocyaninrich cherry juice for 12 weeks improves memory and cognition in older adults with mild-to-moderate dementia. European Journal of Nutrition, 2017, 56: 333-341 CrossRef
  46. Fotev Yu.V., Pivovarov V.F., Artem’eva A.M., Kulikov I.M., Goncharova Yu.K., Syso A.I., Goncharov N.P. Vavilovskiy zhurnal genetiki i selektsii, 2018, 22(7): 776-783 CrossRef (in Russ.).
  47. Xu D.-P. Li Y., Meng X., Zhou T., Zhou Y., Zheng J., Zhang J.J., Li H.-B. Natural antioxidants in foods and medicinal plants: extraction, assessment and resources.International Journal of Molecular Sciences, 2017, 18(1): 96 CrossRef.
  48. Olszowy M. What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiology and Biochemistry, 2019, 144: 135-143 CrossRef
  49. Ganesan K., Xu B. A critical review on polyphenols and health benefits of black soybeans. Nutrients, 2017, 9(5): 455 CrossRef
  50. Guzmán-Ortiz F.A., San Martín-Martínez E., Valverde M.E., Rodriguez-Aza Y., De J Berrios J., Mora-Escobedo R. Profile analysis and correlation across phenolic compounds, isoflavones and antioxidant capacity during germination of soybeans (Glycine max L.). CyTA-Journal of Food, 2017, 15(4): 1-9 CrossRef
  51. Hu C., Wong W.T., Wu R., Lai W.F. Biochemistry and use of soybean isoflavones in functional food development. Critical Reviews in Food Science and Nutrition, 2020, 60(12): 2098-2112 CrossRef
  52. Yudina R.S., Gordeeva E.I., Shoeva O.Yu., Tikhonova M.A., Khlestkina E.K. Vavilovskiy zhurnal genetiki i selektsii, 2021, 25(2): 178-189 CrossRef (in Russ.).
  53. Zykova T.E., Egorova A.A., Strygina K.V., Shoeva O.Yu., Genaev M.A., Komyshev E.G., Busov I.D., Khertig K., Gerasimova S.V., Koeppel’ I., Khikel’ Sh., Korotkova A.M., Vikhorev A.V., Kumlen Y., Khlestkina E.K. Materialy XIX Vserossiyskoy molodezhnoy shkoly-konferentsii po aktual’nym problemam khimii i biologii [Proc. XIX All-Russian youth school-conference on current problems of chemistry and biology]. Vladivostok, 2022: 20 (in Russ.).
  54. Bartl P., Albreht A., Skrt M., Tremlová B., Ošťádalová M., Šmejkal K., Vovk I., Poklar U.N. Anthocyanins in purple and blue wheat grains and in resulting bread: quantity, composition, and thermal stability. International Journal of Food Sciences and Nutrition, 2015, 66(5): 514-519 CrossRef
  55. Pasqualone A., Bianco A.M., Paradiso V.M., Summo C., Gabarcorta G., Caponio F., Blanco A. Production and characterization of functional biscuits obtained from purple wheat. Food Chem., 2015, 180: 64-70 CrossRef
  56. Shoeva O.Yu., Gordeeva E.I., Khlestkina E.K. Vnutrigennyy DNK-marker dlya otbora pshenitsy s povyshennym soderzhaniem antotsianov v perikarpe zernovki. Federal’noe gosudarstvennoe byudzhetnoe nauchnoe uchrezhdenie Federal’nyy issledovatel’skiy tsentr "Institut tsitologii i genetiki Sibirskogo otdeleniya Rossiyskoy akademii nauk" (ITsiG SO RAN) (RU). Patent na izobretenie RU 2774444 C1, 21.06.2022. Zayavka № 2021135311 ot 29.11.2021 [Intragenic DNA marker for selecting wheat with a high content of anthocyanins in the pericarp of the caryopsis](in Russ.).
  57. Ma D., Zhang J., Li Y., Wang C. Quality of noodles made from colourgrained wheat. Czech J. Food Sci., 2018, 36: 314-320 CrossRef
  58. Shafigullin D.R., Pronina E.P., Gins M.S., Soldatenko A.V. Rossiyskaya sel’skokhozyaystvennaya nauka,2020, 4: 22-24 CrossRef (in Russ.).
  59. Shafigullin D.R., Baykov A.A., Gins M.S., Pronina E.P., Soldatenko A.V. Zernobobovye i krupyanye kul’tury, 2018, 4(28): 103-109 (in Russ.).
  60. Shafigullin D.R., Gins M.S., Pronina E.P. Romanova E.V., Soldatenko A.V. Rossiyskaya sel’skokhozyaystvennaya nauka, 2020, 2: 13-16 CrossRef (in Russ.).
  61. Shafigullin D.R., Gins M.S., Pronina E.P., Baykov A.A. Rossiyskaya sel’skokhozyaystvennaya nauka, 2021, 2: 25-29 CrossRef (in Russ.).
  62. Raju M., Sadineni V., Lakshminarayana R., Krishnakantha T.P., Baskaran V. Carotenoid composition and vitamin A activity of medicinally important green vegetables. Food Chemistry, 2007, 101(4): 15981605 CrossRef
  63. Ames B.N. Micronutrients prevent cancer and delay aging. Toxicol. Lett., 1998, 102-103: 5-18 CrossRef
  64. Egorov E.E. Molekulyarnaya biologiya, 2020, 54(3): 355-361 CrossRef (in Russ.).
  65. Singh R.K., Chang H.W., Yan D., Lee K.M., Ucmak D., Wong K., Abrouk M., Farahnik B., Nakamura M., Zhu T.H., Bhutani T., Liao W. Influence of diet on the gut microbiome and implications for human health. Journal of Translational Medicine, 2017, 15(1): 73 CrossRef
  66. Liu D., Zhang Y., Gharavi R., Park H.R., Lee J., Siddiqui S., Telljohann R., Nassar M.R., Cutler R.G., Becker K.G., Mattson M.P. The mitochondrial uncoupler DNP triggers brain cell mTOR signaling network reprogramming and CREB pathway up-regulation. J. Neurochem., 2015, 134: 677-692 CrossRef
  67. Vishnyakova K.S., Vetkova L.G., Jasko M.V., Aliper A.M., Buzdin A.A., Popov K.V., Kudryavtseva A.V., Yegorov Y.E. Hair growth stimulation by a natural remedy: animal studies. Madridge J. Dermatol. Res., 2018, 3: 38-45 CrossRef
  68. Dröge W. Free radicals in the physiological control of cell function. Physiol. Rev, 2002, 82(1): 47-95 CrossRef
  69. Trichopoulou A., Vasilopoulou E. Mediterranean diet and longevity. Brit. J. Nutr., 2000, 84 (2): 205-209 CrossRef
  70. Golubev A.G. Uspekhi gerontologii, 2003, 12: 57-76 (in Russ.).
  71. Phonsakhan W., Kong-Ngern K. A comparative proteomic study of white and black glutinous rice leaves. Electronic Journal of Biotechnology, 2015, 18(1): 29-34 CrossRef
  72. Guo Y.M., Duan Y.B., Li S. M., Huang P., Tu J., Li H.H. Xiao F.H., Tan X.L. Evaluation and correlation analysis on mineral concentrations and pigment content in pericarp of color rice. Journal of Plant Genetic Resources, 2012, 12(6): 971-974.
  73. Hu C., Zawistowski J., Ling W., Kitts D. Black rice (Oryza sativa L. indica) pigmented fraction suppresses both reactive oxygen species and nitric oxide in chemical and biological model systems. J. Agric. Food Chem., 2003, 51(18): 5271-5277 CrossRef
  74. Zhu F. Anthocyanins in cereals: somposition and health effects. Food Research International, 2018, 109: 232-249 CrossRef
  75. Iqbal S., Bhanger M.I., Anwar F. Antioxidant properties and components of some commercially available varieties of rice bran in Pakistan. Food Chemistry, 2005, 93(2): 265-272 CrossRef
  76. Kushwaha U.K.S. Black rice. In: Black rice. Springer, Cham, 2016: 21-47 CrossRef
  77. Zhang M.W., Zhang R.F., Zhang F.X., Liu R.H. Phenolic profiles and antioxidant activity of black rice bran of different commercially available varieties. J. Agric. Food Chem., 2010, 58: 7580-7587 CrossRef
  78. Kong S., Junsoo L. Antioxidants in milling fractions of black rice cultivars.Food Chemistry, 2010, 120(1): 278-281 CrossRef
  79. Tian S., Nakamura K., Kayahara H. Analysis of phenolic compounds in white rice, brown rice, and germinated brown rice. J. Agric. Food Chem., 2004, 52(15): 4808-4813 CrossRef
  80. Brooks S.A., Yan W., Jackson A.K., Deren C.W. A natural mutation in rc reverts white-rice-pericarp to red and results in a new, dominant, wild-type allele: Rc-g. Theoretical and Applied Genetics, 2008, 117: 575-580 CrossRef
  81. Sutharut J., Sudarat J. Total anthocyanin content and antioxidant activity of germinated colored rice. International Food Research Journal, 2012, 19(1): 215-221.
  82. Sompong R., Siebenhandi-Ehn S., Linsberger-Martin G., Berghofer E. Physicochemical and antioxidative properties of red and black rice varieties from Thailand. China and Sri lanka, Food Chemistry, 2011, 124(1): 132-140 CrossRef
  83. Shen Y., Jin L., Xiao P., Lu Y., Bao J. Total phenolics, flavonoids, antioxidant capacity in rice grain and their relations to grain color, size and weight. Journal of Cereal Science, 2009, 49(1): 106-111 CrossRef
  84. Yao Y., Sang W., Zhou M., Ren G. Antioxidant and a-glucosidase inhibitory activity of colored grains in China. J. Agric. Food Chem., 2010, 8(2): 770-774 CrossRef
  85. Yafang S., Gan Z., Jinsong B. Total phenolic content and antioxidant capacity of rice grains with extremely small size. African Journal of Agricultural Research, 2011, 6(10): 2289-2293.
  86. Berezov T.T., Korovkin B.F. Biologicheskaya khimiya [Biological chemistry]. Moscow, 2002 (in Russ.).
  87. Goncharova Yu.K., Kharitonov E.M., Malyuchenko E.A., Bushman N.Yu. Vavilovskiy zhurnal genetiki i selektsii,2018, 22(1): 79-87 CrossRef (in Russ.).
  88. Kryukova E.V., Chugunova O.V., Tiunov V.M. Tekhnologiya i tovarovedenie innovatsionnykh pishchevykh produktov, 2016, 3(38): 80-87 (in Russ.).
  89. Mysakov D.S., Kryukova E.V., Chugunova O.V. Internet-zhurnal Naukovedenie, 2015, 7(15): 1-6 (in Russ.).
  90. Chugunova O.V., Kokoreva L.A. Tiunov V.M. Industriya pitaniya, 2018, 3(2): 22-30 (in Russ.).
  91. Tiunov V.M., Chugunova O.V., Grashchenkov D.V. Polzunovskiy vestnik, 2019, 1: 64-70 CrossRef (in Russ.).
  92. Ulitin V.O., Kharitonov E.M., Goncharova Yu.K. About traits of quality and their genetic control in Oriza L. (review). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2012, 47(3): 12-18 (in Russ.).
  93. Derkanosova N.M., Ponomareva I.N., Zolotareva N.I., Gins M.S., Shurshikova G.V. Khlebopechenie Rossii, 2018, 1: 30-33 (in Russ.).
  94. Magomedov G.O., Kuchmenko T.A., Zhuravlev A.A., Shevyakova T.A., Chernyshova Yu.A., Drozdova E.V., Mazina E.A., Miroshnichenko L.A. Khleboprodukty, 2016, 5: 48-50 (in Russ.).
  95. Egorova E.Yu., Reznichenko I.Yu. Tekhnika i tekhnologiya pishchevykh proizvodstv, 2018, 48(2): 36-45 CrossRef (in Russ.).
  96. Skobel’skaya Z.G., Balykhin M.G., Khasanova S.D., Gins M.S. Dostizheniya nauki i tekhniki APK, 2020, 34(6): 92-96 CrossRef (in Russ.).
  97. Gins M., Gins V., Momyleva S., Kulikov I., Medvedev S., Kononkov P., Pivovarov V. Mineral composition of amaranth (Amaranthus L.) seeds of vegetable and grain usage by ARHIVBSP selection. Potravinarstvo Slovak Journal of Food Sciences, 2018, 12(1): 330-336 CrossRef
  98. Khlestkina E.K., Shoeva O.Yu., Gordeeva E.I. Vavilovskiy zhurnal genetiki i selektsii, 2014, 18(4): 784-796 (in Russ.).
  99. Oikawa T., Maeda H., Oguchi T., Yamaguchi T., Tanabe N., Ebana K., Yano M., Ebitani T., Izawa T. The birth of a black rice gene and its local spread by introgression. Plant Cell, 2015, 27(9): 2401-2414 CrossRef
  100. Korotenko T.L. Materialy II nauchno-prakticheskoykonferentsii molodykh uchenykh Vserossiyskogo foruma po selektsii i semenovodstvu «Innovatsionnye tekhnologii otechestvennoy selektsii i semenovodstva» [Proc. Int. Conf. «Innovative technologies of domestic selection and seed production»]. Krasnodar,2018: 244-246 (in Russ.).
  101. Qin Y., Zhai Q., Li Y., Cao M., Xu Y., Zhao K., Wang T. Cyanidin-3-O-glucoside ameliorates diabetic nephropathy through regulation of glutathione pool. Biomedicine & Pharmacotherapy, 2018, 103: 1223-1230 CrossRef
  102. Goncharova J.K., Kharitonov E.M. Genetic control of traits associated with phosphorus uptake in rice (Oryza sativa L.) varieties. Russian Journal of Genetics: Applied Research, 2016, 6(3): 270-278 CrossRef
  103. Kharitonov E.M., Goncharova Y.K., Maliuchenko E.A. The genetics of the traits determining adaptability to abiotic stress in rice (Oryza sativa L.). Russian Journal of Genetics: Applied Research, 2017, 7(6): 684-697 CrossRef
  104. Goufo P., Trindade H. Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, g-oryzanol, and phytic acid. Food Science & Nutrition, 2014, 2(2): 75-104 CrossRef
  105. Furukawa T., Maekawa M., Oki T., Suda I., Iida S., Shimada H., Takamure I., Kadowaki K. The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp. The Plant Journal, 2007, 49(1): 91-102 CrossRef
  106. Shao Y., Jin L., Zhang G., Lu Y., Shen Y., Bao J. Association mapping of grain color, phenolic content, flavonoid content and antioxidant capacity in dehulled rice. Theoretical and Applied Genetics, 2011, 122: 1005-1016 CrossRef
  107. Tan Y.F., Sun M., Xing Y.Z., Hua J.P., Sun X.L., Zhang Q.F., Corke H. Mapping quantitative trait loci for milling quality, protein content and color characteristics of rice using a recombinant inbred line population derived from an elite rice hybrid. Theoretical and Applied Genetics, 2001, 103: 1037-1045 CrossRef
  108. Sweeney M.T., Thomson M.J., Pfeil B.E., McCouch S.R. Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice. Plant Cell, 2006, 18: 283-294 CrossRef
  109. Wang C.X., Shu Q.Y. Fine mapping and candidate gene analysis of purple pericarp gene Pb in rice (Oryza sativa L.). Chinese Science Bulletin, 2007, 52: 3097-3104 CrossRef
  110. Goncharova Y.K. Method of fixing the heterotic effect—implementation on plants (on the hundredth anniversary of the birth of V.A. Strunnikov). Russian Journal of Developmental Biology, 2014, 45(6): 367-370 CrossRef
  111. Cuong M., Arasu M., Jeon J., Park Y., Kwon S., Al-Dhabi N., Park S. Medically important carotenoids from Momordica charantia and their gene expressions in different organs. Saudi Journal of Biological Sciences, 2017, 24: 1913-1919 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)