doi: 10.15389/agrobiology.2023.1.23eng

UDC: 631.4:631.617:631.672:631.81

The work was supported financially by the Government of the Perm Territory within the framework of scientific project No. S-26/507.



Yu.G. Maksimova1, 2, V.A. Shchetko3, A.Yu. Maksimov1, 2

1Institute of Ecology and Genetics of Microorganisms UB RAS, 13, ul. Goleva, Perm, 614081 Russia, e-mail (✉ corresponding author),;
2Perm State National Research University, 15, ul. Bukireva, Perm, 614990 Russia;
3Institute of Microbiology of the National Academy of Sciences of Belarus, 2, ul. Kuprevicha, Minsk, 220141 Belarus, e-mail

Maksimova Yu.G.
Maksimov A.Yu.
Shchetko V.A.

Received August 26, 2022

Polymer hydrogels (PHGs) are formed by swelling three-dimensionally cross-linked hydrophilic polymers and are usually characterized by high water-holding capacity (K. Rop et al., 2019; N. Singh et al., 2021; A. Sikder et al., 2021). Moisture capacity and a prolonged release of fertilizers, pesticides and bio-preparations make them promising for use in agriculture (P. Rychter et al., 2016; A. Sikder et al., 2021). PHGs reduces the need for frequent irrigation, increases seed germination, plant growth, seedling survival, enhances root growth, prevents soil erosion, pesticide and fertilizer overdose (N. Singh et al., 2021). According to their origin, PHGs are divided into synthetic and natural ones: synthetic hydrogels, mainly polymers and copolymers of acrylamide and acrylic acid, have a high water-holding capacity and strength, however, they are weakly degraded in soils (A.V. Smagin et al., 2014; B. Wilske et al., 2014). It is known that microorganisms are able to use PHGs based on acrylic polymers as a source of nitrogen and/or carbon for growth (H. Matsuoka et al., 2002; M. Bao et al., 2010; F. Yu et al., 2015) due to the presence of amidase activity (F. Yu et al., 2015; A. Nyyssölä et al., 2019), ensuring gradual decomposition of PHGs in the soil. Natural hydrogels, among which cellulose-based PHGs predominate, have less strength, but are biodegradable and are environmentally friendly (R. Kundu et al., 2022). In addition to cellulose, collagen (Z.-Y. Hu et al., 2021), alginates (B. Tomadoni et al., 2020), chitosan (A. Zinchenko et al., 2022), and other polysaccharides are used as water-retaining strongly swelling agents of natural origin. Hydrogels are promising as carriers for the prolonged release of fertilizers, mainly urea (P. Rychter et al., 2016; W. Tanan et al., 2021), pesticides (C. Xu et al., 2021; C. Bai et al., 2015; F.E. Baloch et al., 2021; D. Zheng et al., 2022), for the introduction of microbial preparations into the soil, including phosphate-mobilizing and nitrogen-fixing bacteria (C.S. Wu, 2008; A.V. Kovrizhnikov et al., 2021). For a more active introduction of PHGs into practice, it is necessary to reduce their cost, mainly by the creation of composite materials based on agricultural and biotechnology industries waste. It is necessary to combine the positive qualities of synthetic and natural PHGs, synthesizing semi-synthetic hydrogels that are biodegradable and do not pollute the environment, have optimal mechanical strength and water-absorbing capacity. As water-retaining and anti-erosion agents, hydrogels based on polymers and copolymers of acrylamide and acrylic acid are more promising (I.G. Panova et al., 2021; N.B. Sadovnikova et al., 2014; A.V. Smagin et al., 2014), and natural and semi-synthetic PHGs are more promising as carriers of fertilizers and pesticides (P. Jungsinyatam et al., 2022; A. Di Martino et al., 2021). This review summarizes current information on the use of PHGs of various compositions in agriculture, provides data on the positive effect of PHGs on soil water balance, productivity, growth, survival of various crops, seed germination and commercial quality of root crops, as well as the prospects for the PHGs development.

Keywords: polymer hydrogels, water-retaining capacity, biological preparations, fertilizers, pesticides.



  1. Rop K., Mbui D., Njomo N., Karuku G.N., Michira I., Ajayi R.F. Biodegradable water hyacinth cellulose-graft-poly(ammonium acrylate-co-acrylic acid) polymer hydrogel for potential agricultural application. Heliyon, 2019, 5(3): e01416 CrossRef
  2. Singh N., Agarwal S., Jain A., Khan S. 3-Dimensional cross linked hydrophilic polymeric network “hydrogels”: an agriculture boom. Agricultural Water Management, 2021, 253: 106939 CrossRef
  3. Al-Jabari M., Abu Ghyadah R., Alokely R. Recovery of hydrogel from baby diaper wastes and its application for enhancing soil irrigation management. Journal of Environmental Management, 2019, 239: 255-261 CrossRef
  4. Sikder A., Pearce A.K., Parkinson S.J., Napier R., O’Reilly R.K. Recent trends in advanced polymer materials in agriculture related applications. ACS Applied Polymer Materials, 2021, 3(3): 1203-1217 CrossRef
  5. Nascimento C.D.V., Simmons R.W., de Andrade Feitosa J.P., dos Santos Dias C.T., Cristina M., Costa G. Potential of superabsorbent hydrogels to improve agriculture under abiotic stresses. Journal of Arid Environments, 2021, 189: 104496 CrossRef
  6. Green V.S., Stott D.E. Polyacrylamide: a review of the use, effectiveness, and cost of a soil erosion control amendment. In: Sustaining the global farm. D.E. Stott, R.H. Mohtar, G.C. Steinhardt (eds.). USA, West Lafayette, 2001.
  7. Panova I.G., Ilyasov L.O., Khaidapova D.D., Bashina A.S., Smagin A.V., Ogawa K., Adachi Y., Yaroslavov A.A. Soil conditioners based on anionic polymer and anionic micro-sized hydrogel: a comparative study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610: 125635 CrossRef
  8. Cao L., Li N. Activated-carbon-filled agarose hydrogel as a natural medium for seed germination and seedling growth. International Journal of Biological Macromolecules,2021, 177: 383-391 CrossRef
  9. Rychter P., Kot M., Bajer K., Rogacz D., Šišková A., Kapuśniak J. Utilization of starch films plasticized with urea as fertilizer for improvement of plant growth. Carbohydrate Polymers, 2016, 137: 127-138 CrossRef
  10. Kiran, Tiwari R., Krishnamoorthi S., Kumar K. Synthesis of cross-linker devoid novel hydrogels: Swelling behaviour and controlled urea release studies. Journal of Environmental Chemical Engineering, 2019, 7(4): 103162 CrossRef
  11. Guo Y., Guo R., Shi X., Lian S., Zhou Q., Chen Y., Liu W., Li W. Synthesis of cellulose-based superabsorbent hydrogel with high salt tolerance for soil conditioning. International Journal of Biological Macromolecules, 2022, 209(Part A): 1169-1178 CrossRef
  12. Lin X., Guo L., Shaghaleh H., Hamoud Y.A., Xu X., Liu H. A TEMPO-oxidized cellulose nanofibers/MOFs hydrogel with temperature and pH responsiveness for fertilizers slow-release. International Journal of Biological Macromolecules,2021, 191: 483-491 CrossRef
  13. Wang Y., Shaghaleh H., Hamoud Y.A., Zhang S., Li P., Xu X., Liu H. Synthesis of a pH-responsive nano-cellulose/sodium alginate/MOFs hydrogel and its application in the regulation of water and N-fertilizer. International Journal of Biological Macromolecules, 2021, 187: 262-271 CrossRef
  14. Zhang Z., Wang X., Liu T., Liu L., Yu C., Tian Y., Zhang X., Shen J. Al3+ coordinated chitosan hydrogel with ultrahigh water absorbency and environmental response. Materials & Design, 2022, 214: 110390 CrossRef
  15. Qureshi M.A., Nishat N., Jadoun S., Ansari M.Z. Polysaccharide based superabsorbent hydrogels and their methods of synthesis: a review. Carbohydrate Polymer Technologies and Applications, 2020, 1: 100014 CrossRef
  16. Sadovnikova N.B., Smagin A.V., Sidorova M.A. Pochvovedenie,2014, 4: 455-465 CrossRef (in Russ.).
  17. Sennakesavan G., Mostakhdemin M., Dkhar L.K., Seyfoddin A., Fatihhi S.J. Acrylic acid/acrylamide based hydrogels and its properties — a review. Polymer Degradation and Stability,2020, 180: 109308 CrossRef
  18. Smagin A.V., Sadovnikova N.B., Nikolaeva E.I. Pochvovedenie,2014,2:192-202 CrossRef (in Russ.).
  19. Smagin A.V., Sadovnikova N.B., Smagina M.V. Pochvovedenie, 2014, 6: 716-723 CrossRef (in Russ.).
  20. Bauli C.R., Lima G.F., de Souza A.G., Ferreira R.R., Rosa D.S. Eco-friendly carboxymethyl cellulose hydrogels filled with nanocellulose or nanoclays for agriculture applications as soil conditioning and nutrient carrier and their impact on cucumber growing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 623: 126771 CrossRef
  21. Rather R.A., Bhat M.A., Shalla A.H. An insight into synthetic and physiological aspects of superabsorbent hydrogels based on carbohydrate type polymers for various applications: a review. Carbohydrate Polymer Technologies and Applications, 2022, 3: 100202 CrossRef
  22. Wang Y., Liu M., Ni B., Xie L. Κ-carrageenan-sodium alginate beads and superabsorbent coated nitrogen fertilizer with slow-release, water-retention, and anticompaction properties. Industrial & Engineering Chemistry Research, 2012, 51(3): 1413-1422 CrossRef
  23. Arafa E.G., Sabaa M.W., Mohamed R.R., Elzanaty A.M., Abdel-Gawad O.F. Preparation of biodegradable sodium alginate/carboxymethylchitosan hydrogels for the slow-release of urea fertilizer and their antimicrobial activity. Reactive and Functional Polymers, 2022, 174: 105243 CrossRef
  24. Arafa E.G., Sabaa M.W., Mohamed R.R., Kamel E.M., Elzanaty A.M., Mahmoud A.M., Abdel-Gawad O.F. Eco-friendly and biodegradable sodium alginate/quaternized chitosan hydrogel for controlled release of urea and its antimicrobial activity. Carbohydrate Polymers, 2022, 291: 119555 CrossRef
  25. Kundu R., Mahada P., Chhirang B., Das B. Cellulose hydrogels: green and sustainable soft biomaterials. Current Research in Green and Sustainable Chemistry,2022, 5: 100252 CrossRef
  26. Meng Y., Liu X., Li C., Liu H., Cheng Y., Lu J., Zhang K., Wang H. Super-swelling lignin-based biopolymer hydrogels for soil water retention from paper industry waste. International Journal of Biological Macromolecules, 2019, 135: 815-820 CrossRef
  27. Li S., Chen G. Agricultural waste-derived superabsorbent hydrogels: Preparation, performance, and socioeconomic impacts. Journal of Cleaner Production, 2020, 251: 119669 CrossRef
  28. Voskoboynikov I.V., Konstantinova S.A., Korotkov A.N., Mikhaylov A.I., Nikol’skiy S.N. Lesnoy vestnik, 2010, 6: 151-153 (in Russ.).
  29. Ventura-Cruz S., Tecante A. Nanocellulose and microcrystalline cellulose from agricultural waste: review on isolation and application as reinforcement in polymeric matrices. Food Hydrocolloids, 2021, 118: 106771 CrossRef
  30. Zhang H., Yang M., Luan Q., Tang H., Huang F., Xiang X., Yang C., Bao Y. Cellulose anionic hydrogels based on cellulose nanofibers as natural stimulants for seed germination and seedling growth. Journal of Agricultural and Food Chemistry, 2017, 65(19): 3785-3791 CrossRef
  31. Hu Z.-Y., Chen G., Yi S.-H., Wang Y., Liu Q., Wang R. Multifunctional porous hydrogel with nutrient controlled-release and excellent biodegradation. Journal of Environmental Chemical Engineering, 2021, 9(5): 106146 CrossRef
  32. Tomadoni B., Salcedo M.F., Mansilla A.Y., Casalongué C.A., Alvarez V.A. Macroporous alginate-based hydrogels to control soil substrate moisture: effect on lettuce plants under drought stress. European Polymer Journal, 2020, 137: 109953 CrossRef
  33. Zinchenko A., Sakai T., Morikawa K., Nakano M. Efficient stabilization of soil, sand, and clay by a polymer network of biomass-derived chitosan and carboxymethyl cellulose. Journal of Environmental Chemical Engineering,2022, 10(1): 107084 CrossRef
  34. Zhang S., Yang Y., Gao B., Wan Y., Li Y.C., Zhao C. Bio-based Interpenetrating network polymer composites from locust sawdust as coating material for environmentally friendly controlled-release urea fertilizers. Journal of Agricultural and Food Chemistry, 2016, 64(28): 5692-5700 CrossRef
  35. Chiaregato C.G., França D., Messa L.L., dos Santos Pereira T., Faez R. A review of advances over 20 years on polysaccharide-based polymers applied as enhanced efficiency fertilizers. Carbohydrate Polymers, 2022, 279: 119014 CrossRef
  36. Raafat A.I., Eid M., El-Arnaouty M.B. Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2012, 283: 71-76 CrossRef
  37. Guo L., Wang Y., Wang M., Shaghaleh H., Hamoud Y.A., Xu X., Liu H. Synthesis of bio-based MIL-100(Fe)@CNF-SA composite hydrogel and its application in slow-release N-fertilizer. Journal of Cleaner Production,2021, 324: 129274 CrossRef
  38. Chaudhuri S.D., Dey A., Upganlawar S., Chakrabarty D. Influence of clay concentration on the absorption and rheological attributes of modified cellulose /acrylic acid based hydrogel and the application of such hydrogel. Materials Chemistry and Physics, 2022, 282: 125942 CrossRef
  39. Zhang Y., Tian X., Zhang Q., Xie H., Wang B., Feng Y. Hydrochar-embedded carboxymethyl cellulose-g-poly(acrylic acid) hydrogel as stable soil water retention and nutrient release agent for plant growth. Journal of Bioresources and Bioproducts, 2022, 7(2): 116-127 CrossRef
  40. Tanan W., Panichpakdee J., Saengsuwan S. Novel biodegradable hydrogel based on natural polymers: Synthesis, characterization, swelling/reswelling and biodegradability. European Polymer Journal, 2019, 112: 678-687 CrossRef
  41. Tanan W., Panichpakdee J., Suwanakood P., Saengsuwan S. Biodegradable hydrogels of cassava starch-g-polyacrylic acid/natural rubber/polyvinyl alcohol as environmentally friendly and highly efficient coating material for slow-release urea fertilizers. Journal of Industrial and Engineering Chemistry, 2021, 101: 237-252 CrossRef
  42. Kenawy E.-R., Seggiani M., Cinelli P., Elnaby H.M.H., Azaam M.M. Swelling capacity of sugarcane bagasse-g-poly(acrylamide)/attapulgite superabsorbent composites and their application as slow release fertilizer. European Polymer Journal,2020, 133: 109769 CrossRef
  43. Abdel-Raouf M.E., El-Saeed S.M., Zaki E.G., Al-Sabagh A.M. Green chemistry approach for preparation of hydrogels for agriculture applications through modification of natural polymers and investigating their swelling properties. Egyptian Journal of Petroleum, 2018, 27(4): 1345-1355 CrossRef
  44. Songara J.C., Patel J.N. Synthesis of guar gum-based hydrogel for sugarcane field solid conditioning. Journal of the Indian Chemical Society, 2021, 98(11): 10022 CrossRef
  45. Wu Y., Brickler C., Li S., Chen G. Synthesis of microwave-mediated biochar-hydrogel composites for enhanced water absorbency and nitrogen release. Polymer Testing, 2021, 93: 106996 CrossRef
  46. Ban M.T., Mahadin N., Karim K.J.A. Synthesis of hydrogel from sugarcane bagasse extracted cellulose for swelling properties study. Materials Today: Proceedings, 2022, 50: 2567-2575 CrossRef
  47. Rizwan M., Gilani S.R., Durrani A.I., Naseem S. Kinetic model studies of controlled nutrient release and swelling behavior of combo hydrogel using Acer platanoides cellulose. Journal of the Taiwan Institute of Chemical Engineers, 2022, 131: 104137 CrossRef
  48. Cui C., Jia Y., Sun Q., Yu M., Ji N., Dai L., Wang Y., Qin Y., Xiong L., Sun Q. Recent advances in the preparation, characterization, and food application of starch-based hydrogels. Carbohydrate Polymers, 2022, 291: 119624 CrossRef
  49. Kowalski G., Ptaszek P., Kuterasiński Ł. Swelling of hydrogels based on carboxymethylated starch and poly(acrylic acid): nonlinear rheological. Approach Polymers, 2020, 12: 2564 CrossRef
  50. Kusnin N., Syed M.A., Ahmad S.A. Toxicity, pollution and biodegradation of acrylamide – a mini review. Journal of Biochemistry, Microbiology and Biotechnology, 2015, 3(2): 6-12.
  51. Tepe Y., Çebi A. Acrylamide in environmental water: a review on sources, exposure, and public health risks. Expo Health, 2019, 11: 3-12 CrossRef
  52. Khan H., Iram, Gul K., Ara B., Khan A., Ali N., Ali N., Bilal M. Adsorptive removal of acrylic acid from the aqueous environment using raw and chemically modified alumina: Batch adsorption, kinetic, equilibrium and thermodynamic studies. Journal of Environmental Chemical Engineering,2020, 8(4): 103927 CrossRef
  53. Chen J., Wua J., Raffa P., Picchioni F., Koning C.E. Superabsorbent Polymers: From long-established, microplastics generating systems, to sustainable, biodegradable and future proof alternatives. Progress in Polymer Science,2022, 125: 101475 CrossRef
  54. Wilske B., Bai M., Lindenstruth B., Bach M., Rezaie Z., Frede H.-G., Breuer L. Biodegradability of a polyacrylate superabsorbent in agricultural soil. Environmental Science and Pollution Research, 2014, 21: 9453-9460 CrossRef
  55. Smagin A.V. Teoriya i praktika konstruirovaniya pochv [Theorrical and practicfal soil engineering]. Moscow, 2012 (in Russ.).
  56. Matsuoka H., Ishimura F., Takeda T., Hikuma M. Isolation of polyacrylamide-degrading microorganisms from soil. Biotechnology and Bioprocess Engineering, 2002, 7: 327-330 CrossRef
  57. Bao M., Chen Q., Li Y., Jiang G. Biodegradation of partially hydrolyzed polyacrylamide by bacteria isolated from production water after polymer flooding in an oil field. Journal of Hazardous Materials, 2010, 184(1-3): 105-110 CrossRef
  58. Maksimova Yu.G., Gorshkova A.A., Demakov V.A. Vestnik Permskogo universiteta. Seriya biologiya, 2017, 2: 200-204 (in Russ.).
  59. Wen Q., Chen Z., Zhao Y., Zhang H., Feng Y. Biodegradation of polyacrylamide by bacteria isolated from activated sludge and oil-contaminated soil. Journal of Hazardous Materials, 2010, 175(1-3): 955-959 CrossRef
  60. Sipulinov R.B., Karagaycheva Yu.V., Kozulina T.N., Rogacheva S.M., Otradnova M.I. Uchenye zapiski Tavricheskogo natsional’nogo universiteta im. V. I. Vernadskogo, 2014, 27(66)(2): 150-156 (in Russ.).
  61. Yu F., Fu R., Xie Y., Chen W. Isolation and characterization of polyacrylamide-degrading bacteria from dewatered sludge. International Journal of Environmental Research and Public Health, 2015, 12(4): 4214-4230 CrossRef
  62. Kay-Shoemake J.L., Watwood M.E., Sojka R.E., Lentz R.D. Soil amidase activity in polyacrylamide-treated soils and potential activity toward common amide-containing pesticides. Biology and Fertility of Soils, 2000, 31: 183-186 CrossRef
  63. Nyyssölä A., Ahlgren J. Microbial degradation of polyacrylamide and the deamination product polyacrylate.International Biodeterioration & Biodegradation, 2019, 139: 24-33 CrossRef
  64. Xiong B., Loss R.D., Shields D., Pawlik T., Hochreiter R., Zydney A.L., Kumar M. Polyacrylamide degradation and its implications in environmental systems. npj Clean Water, 2018, 1: 17 CrossRef
  65. Polman E.M.N., Gruter G.-J.M., Parsons J.R., Tietema A. Comparison of the aerobic biodegradation of biopolymers and the corresponding bioplastics: a review. Science of the Total Environment, 2021, 753: 141953 CrossRef
  66. Pérez J., Muñoz-Dorado J., de la Rubia T., Martínez J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. International Microbiology,2002, 5(2): 53-63 CrossRef
  67. Aktuganov G.Е., Melent’ev A.I., Varlamov V.P. Prikladnaya biokhimiya i mikrobiologiya, 2019, 55(4): 315-337 CrossRef (in Russ.).
  68. Belik A.A., Sil’chenko A.S., Kusaykin M.I., Zvyagintseva T.N., Ermakova S.P. Bioorganicheskaya khimiya, 2018, 44(4): 382-393 CrossRef (in Russ.).
  69. Jungsinyatam P., Suwanakood P., Saengsuwan S. Multicomponent biodegradable hydrogels based on natural biopolymers as environmentally coating membrane for slow-release fertilizers: Effect of crosslinker type. Science of the Total Environment, 2022, 843: 157050 CrossRef
  70. Ni B., Liu M., Lü S. Multifunctional slow-release urea fertilizer from ethylcellulose and superabsorbent coated formulations. Chemical Engineering Journal, 2009, 155(3): 892-898 CrossRef
  71. Ghobashy M.M., Mousaa I.M., El-Sayyad G.S. Radiation synthesis of urea/hydrogel core shells coated with three different natural oils via a layer-by-layer approach: an investigation of their slow release and effects on plant growth-promoting rhizobacteria. Progress in Organic Coatings, 2021, 151: 106022 CrossRef
  72. Liu S., Wu Q., Sun X., Yue Y., Tubana B., Yang R., Cheng H.N. Novel alginate-cellulose nanofiber-poly(vinyl alcohol) hydrogels for carrying and delivering nitrogen, phosphorus and potassium chemicals. International Journal of Biological Macromolecules, 2021, 172: 330-340 CrossRef
  73. Di Martino A., Khan Y.A., Durpekova S., Sedlarik V., Elich O., Cechmankova J. Ecofriendly renewable hydrogels based on whey protein and for slow release of fertilizers and soil conditioning. Journal of Cleaner Production, 2021, 285: 124848 CrossRef
  74. Sampathkumar K., Tan K.X., Loo S.C.J. Developing nano-delivery systems for agriculture and food applications with nature-derived polymers. iScience, 2020, 23(5): 101055 CrossRef
  75. Abdel-Aziz H.M.M., Hasaneen M.N.A., Omer A.M. Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Spanish Journal of Agricultural Research, 2016, 14(1): e0902 CrossRef
  76. Xu C., Cao L., Bilal M., Cao C., Zhao P., Zhang H., Huang Q. Multifunctional manganese-based carboxymethyl chitosan hydrogels for pH-triggered pesticide release and enhanced fungicidal activity. Carbohydrate Polymers, 2021, 262: 117933 CrossRef
  77. Zheng D., Wang K., Bai B., Hu N., Wang H. Swelling and glyphosate-controlled release behavior of multi-responsive alginate-g-P(NIPAm-co-NDEAm)-based hydrogel. Carbohydrate Polymers, 2022, 282: 119113 CrossRef
  78. Baloch F.E., Afzali D., Fathirad F. Design of acrylic acid/nanoclay grafted polysaccharide hydrogels as superabsorbent for controlled release of chlorpyrifos. Applied Clay Science, 2021, 211: 106194 CrossRef
  79. Xiang Y., Zhang G., Chen C., Liu B., Cai D., Wu Z. Fabrication a pH-responsively controlled-release pesticide using an attapulgite-based hydrogel ACS. Sustainable Chemistry & Engineering, 2018, 6(1): 1192-1201 CrossRef
  80. Bai C., Zhang S., Huang L., Wang H., Wang W., Ye Q. Starch-based hydrogel loading with carbendazim for controlled-release and water absorption. Carbohydrate Polymers, 2015, 125: 376-383 CrossRef
  81. Sarkar D.J., Singh A. pH-triggered Release of boron and thiamethoxam from boric acid crosslinked carboxymethyl cellulose hydrogel based formulations. Polymer-Plastics Technology and Engineering, 2019, 58(1): 83-96 CrossRef
  82. Sarkar D.J., Singh A. Base triggered release of insecticide from bentonite reinforced citric acid crosslinked carboxymethyl cellulose hydrogel composites. Carbohydrate Polymers, 2017, 156: 303-311 CrossRef
  83. Debabov V.G., Yanenko A.S. Biocatalytic hydrolysis of nitriles. Review Journal of Chemistry, 2011, 1(4): 385-402 CrossRef
  84. Maksimova Yu.G., Maksimov A.Yu., Demakov V.A., Budnikov V.I. Vestnik Permskogo universiteta. Seriya Biologiya, 2010, 1(1): 45-49.
  85. Perez J.J., Francois N.J., Maroniche G.A., Borrajo M.P., Pereyra M.A., Creus C.M. A novel, green, low-cost chitosan-starch hydrogel as potential delivery system for plant growth-promoting bacteria. Carbohydrate Polymers, 2018, 202: 409-417 CrossRef
  86. Kovrizhnikov A.V., Pylaev T.E., Zakharevich A.M., Konnova S.A., Kupryashina M.A. Seriya: Khimiya. Biologiya. Еkologiya, 2021, 21(3): 298-303 (dol: 10.18500/1816-9775-2021-21-3-298-303">CrossRef (in Russ.).
  87. Wu C.-S. Controlled release evaluation of bacterial fertilizer using polymer composites as matrix. Journal of Controlled Release, 2008, 132(1): 42-48 CrossRef
  88. El-Saied H., El-Hady O.A., Basta A.H., El-Dewiny C.Y., Abo-Sedera S.A., Bio-chemical properties of sandy calcareous soil treated with rice straw-based hydrogels. Journal of the Saudi Society of Agricultural Sciences, 2016, 15(2): 188-194 CrossRef
  89. Mikiciuk G., Mikiciuk M., Hawrot-Paw M. Influence of superabsorbent polymers on the chemical composition of strawberry (Fragaria ½ ananassa Duch.) and biological activity in the soil. Folia Horticulturae, 2015, 27: 63-69 CrossRef
  90. Danilova T.N., Tabynbaeva L.K. Polymer gels to manage water availability for wheat (Triticum aestivum L.) under various environment conditions. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2019, 54(1): 76-83 CrossRef
  91. Tibir’kov A.P., Filin V.I. Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa, 2012, 3(27): 1-5 (in Russ.).
  92. Kuzin E.N., Aref’ev A.N. Zemledelie, 2013, 2: 12-14 (in Russ.).
  93. Godunova E.I., Gundyrin V.N., Shkabarda S.N. Dostizheniya nauki i tekhniki APK, 2014, 1: 24-27 (in Russ.).
  94. Godunova E.I., Gundyrin V.N., Shkabarda S.N. Dostizheniya nauki i tekhniki APK, 2017, 31(5): 16-19 (in Russ.).
  95. Gundyrin V.N., Godunova E.I., Shkabarda S.N. Dostizheniya nauki i tekhniki APK, 2016, 30(8): 37-39 (in Russ.).
  96. Akhter J.A, Akhter J., Mahmood K.A, Malik K.A., Mardan A., Ahmad M., Iqbal M.M. Effects of hydrogel amendment on water storage of sandy loam and loam soils and seedling growth of barley, wheat and chickpea. Plant, Soil and Environment,2004, 50(10): 463-469 CrossRef
  97. Mazloom N., Khorassani R., Zohury G.H., Emami H., Whalen J. Lignin-based hydrogel alleviates drought stress in maize. Environmental and Experimental Botany, 2020, 175: 104055 CrossRef
  98. Dong G., Mu Z., Liu D., Shang L., Zhang W., Gao Y., Zhao M., Zhang X., Chen S., Wei M. Starch phosphate carbamate hydrogel based slow-release urea formulation with good water retentivity. International Journal of Biological Macromolecules, 2021, 190: 189-197 CrossRef
  99. Albalasmeh A.A., Mohawesh O., Gharaibeh M.A., Alghamdi A.G., Alajlouni M.A., Alqudah A.M. Effect of hydrogel on corn growth, water use efficiency, and soil properties in a semi-arid region. Journal of the Saudi Society of Agricultural Sciences, 2022, 21(8): 518-524 CrossRef
  100. Azopkov M.I. Kartofel’ i ovoshchi, 2012, 7: 21 (in Russ.).
  101. Danilova T.N. Izvestiya Sankt-Peterburgskogo gosudarstvennogo agrarnogo universiteta, 2018, 52: 47-53 (in Russ.).
  102. Bykovskiy Yu.A., Azopkov M.I., Fefelova S.V., Akimov D.S., Bagrov R.A. Kartofel’ i ovoshchi, 2018, 1: 18-21 (in Russ.).
  103. Starovoytov V.I., Starovoytova O.A., Manokhina A.A. Vestnik Federal’nogo gosudarstvennogo obrazovatel’nogo uchrezhdeniya vysshego professional’nogo obrazovaniya «Moskovskiy gosudarstvennyy agroinzhenernyy universitet imeni V.P. Goryachkina», 2015, 1(65): 15-19 (in Russ.).
  104. Montesano F.F., Parente A., Santamaria P., Sannino A., Serio F. Biodegradable superabsorbent hydrogel increases water retention properties of growing media and plant growth. Agriculture and Agricultural Science Procedia, 2015, 4: 451-458 CrossRef
  105. Hernández H.H., Benavides-Mendoza A., Ortega-Ortiz H., Hernández-Fuentes A.D., Juárez-Maldonado A.D. Cu nanoparticles in chitosan-PVA hydrogels as promoters of growth, productivity and fruit quality in tomato. Emirates Journal of Food and Agriculture, 2017, 29(8): 573-580.
  106. Tanasić J., Erceg T., Tanasić L., Baloš S., Klisurić O., Ristić I. The influence of reaction conditions on structural properties and swelling kinetics of polyurethane hydrogels intended for agricultural purposes. Reactive and Functional Polymers, 2021, 169: 105085 CrossRef
  107. Okolelova A.A., Rachimova N.A., Egorova G.S., Kasterina N.G., Zaikina V.N. Influence of hydrogels on productivity of light-brown soils. International Journal of Environmental Problems, 2015, 2(2): 117-135 CrossRef
  108. Voskoboynikova T.G., Okolelova A.A., Manov R.O. Nauchnye vedomosti. Seriya Estestvennye nauki, 2015, 9(31): 37-42 (in Russ.).
  109. Durpekova S., Bergerova E.D., Hanusova D., Dusankova M., Sedlarik V. Ecofriendly whey/polysaccharide-based hydrogel with poly(lactic acid) for improvement of agricultural soil quality and plant growth. International Journal of Biological Macromolecules, 2022, 212: 85-96 CrossRef
  110. Gundyrin V.N., Godunova E.I., Shkabarda S.N. Zemledelie, 2014, 6: 37-38 (in Russ.).
  111. Danilova T.N., Olenchenko E.A. Melioratsiya i vodnoe khozyaystvo, 2016, 2: 22-25 (in Russ.).
  112. Voropaeva E.V., El’shaeva I.V. Izvestiya Sankt-Peterburgskogo gosudarstvennogo agrarnogo universiteta, 2021, 2(63): 84-91 CrossRef (in Russ.).
  113. Cao L., Zhu J., Li N. Selenium-agarose hybrid hydrogel as a recyclable natural substrate for selenium-enriched cultivation of mung bean sprouts. International Journal of Biological Macromolecules, 2022, 194: 17-23 CrossRef
  114. Suman A., Verma P., Yadav A.N., Srinivasamurthy, Singh A., Prasanna R. Development of hydrogel based bio-inoculant formulations and their impact on plant biometric parameters of wheat (Triticum aestivum L.). International Journal of Current Microbiology and Applied Sciences, 2016, 5(3): 890-901 CrossRef
  115. Jnanesha A.C., Kumar A., Lal R.K. Hydrogel application improved growth and yield in Senna (Cassia angustifolia Vahl.). Industrial Crops & Products, 2021, 174: 114175 CrossRef
  116. Farjam S., Kenarsari M.J., Rokhzadi A., Yousefi B. Effects of inter-row spacing and superabsorbent polymer application on yield and productivity of rainfed chickpea. Journal of Biodiversity and Environmental Sciences, 2014, 5(3): 316-320.
  117. Kumar M.S., Kumar G.V.S., Mrudula K.A., Kumar G.V. Effect of hydrophilic polymer and farmyard manure on yield attributes and yields of rainfed chickpea. International Journal of Current Microbiology and Applied Sciences, 2020, 9(8): 4003-4007 CrossRef
  118. Besharati J., Shirmardi M., Meftahizadeh H., Ardakani M.D., Ghorbanpour M. Changes in growth and quality performance of Roselle (Hibiscus sabdariffa L.) in response to soil amendments with hydrogel and compost under drought stress. South African Journal of Botany, 2022, 145: 334-347 CrossRef







Full article PDF (Rus)

Full article PDF (Eng)