PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2022.1.44eng

UDC: 633.39:581.1

Acknowledgements:
Supported financially from the Department of Education and Youth Policy of the Khanty-Mansiysk Autonomous Okrug — Ugra, within the framework of the project “Technologies for growing and extracting biologically active compounds of northern berry crops and medicinal herbs (YugraBioPharm)” of Surgut State University and within the framework of the State assignment No. 0721-2020-0019

 

ACCUMULATION OF PHOTOSYNTHETIC PIGMENTS AND SECONDARY METABOLITES IN LEAVES OF GALEGA (Galega orientalis Lam.) cv. GALE DEPENDING ON STAND AGE AND AGROTECHNOLOGIES DURING INTRODUCTION IN THE MIDDLE TAIGA OF WESTERN SIBERIA

E.A. Moiseeva1 , I.V. Kravchenko1, L.F. Shepeleva2, R.Kh. Bordey1

1Surgut State University, 1 Prospekt Lenina, Surgut,Khanty-Mansi Autonomous Okrug — Yugra, 628412 Russia, e-mail lapinaea_vizit@mail.ru ( corresponding author), kravinessa@mail.ru, ar80@yandex.ru;
2National Research Tomsk State University, Research Institute of Biology and Biophysics, 36 Prospekt Lenina, Surgut,Khanty-Mansi Autonomous Okrug — Yugra, 634050 Russia, e-mail shepelevalf@mail.ru

ORCID:
Moiseeva E.A. orcid.org/0000-0002-4892-3600
Shepeleva L.F. orcid.org/0000-0002-8805-469X
Kravchenko I.V. orcid.org/0000-0001-5050-6622
Bordey R.Kh. orcid.org/0000-0002-5041-1559

November 29, 2021

 

Plant biomass production and accumulation of bioactive substances are determined by a complex of physiological and biochemical mechanisms, environmental factors and agrotechnologies. The use of Galega orientalis as a forage crop throughout the world is largely due to its unique environmental adaptability and a large yield potential. Despite the widespread use of forage G. orientalis around the world, research data on photosynthetic pigments, vitamin C and flavonoids in green mass of the plants under a new environment are scarce, and for the north of Russia, it is completely absent. Earlier, we were the first to describe the phenological, eco-morphological features and photosynthetic potential, the productivity of green mass and seeds of G. orientalis for the zone of the Middle taiga of Western Siberia. This paper systematizes our first data on the accumulation of photosynthetic pigments, vitamin C, and flavonoids in G. orientalis plants at the site of introduction. The study aimed to characterize the content of these compounds during adaptation to new environment, depending on cropping practices and the age of the herbage. Introductory studies were carried out on the cv. Gale (an experimental plot, the village of Barsovo, Khanty-Mansi Autonomous Okrug — Yugra, Surgut district, 61°15′00″ N, 73°25′00″ E. 2013-2015). Plants were grown using peas as a cover crop, in monoculture with pre-sowing treatment of seeds with the Baikal-EM1 microbiological preparation (OOO NPO EM-Center, Russia), and in monoculture without treatment. The effects of the cropping practices on the total chlorophylls (Chl a + Chl b) in the leaves appeared in the 2nd year plants. Upon seed pre-sowing treatment with the Baikal-EM1 preparation, in the 2nd and 3rd year plants, the level of total chlorophylls by plant development phases was 19-22 % and 16-18 % higher than in the control). In mixed sowing total chlorophylls decreased at the end of the 2nd year but exceeded the control (by 33 %) by the end of the 3rd year. In the control, the Chl a level in the leaves of the 1st, 2nd and 3rd year plants averaged 1.23±0.10, 1.29±0.12 and 1.32±0.14 mg/g dry weight over the growing season. Over the 2nd year of growth, the content of Chl a in the leaves increased by 15 % on average upon the Baikal-EM1 application compared to the control and remained within the control values (1.20±0.23 mg/g) (р ≤ 0.05) in the mixed stands with pea plants. For the microbiological preparation, the average Chl a/Chl b ratio significantly (p ≤ 0.05) decreased over 3 years, which may indicate an increase in the adaptive potential of plants, and for the mixed crops, it remained within the control values. The proportion of chlorophylls (Chl a + Chl b) localized in the light-harvesting complexes (LHC) varied from 20 to 90 % depending on the plant phenophase, stand age, and the agrotechnology. In the control and two treatments, the correlation coefficients between Chl a/Chl b and the proportion of chlorophylls (Chl a + Chl b) localized in the LHC were r = -0.83, r = -0.93, and r = -0.65, respectively. Treatments did not lead to a statistically significant change in the Chl/Car index. Nevertheless, after inoculation with the Baikal-EM1 biological and in mixed sowing with peas, the accumulation of carotenoids exceeded the control. For all treatments over the years, the accumulation of all pigments in the leaves directly correlated with the hydrothermal coefficient (HTC). The content of Chl b and carotenoids turned out to be weaker associated with the temperature regime, while the first parameter directly correlated with precipitation during the season, and a negative correlation occurred for the second parameter. When inoculated with Baikal-EM1, the leaf level of vitamin C in the 1st and 2nd year plants increased compared to the control and was almost equal to the control in the 3rd year plants. In the 3rd year mixed sowing, the vitamin C content decreased compared to control. After application of the microbiological preparation and in the control, the content of flavonoids in the 3rd year plants switched to generative development sharply decreased, while in the sowing with the cover crop, where the virginal stage continued, it sharply increased (1.6 times compared to previous years). In general, our findings indicate that the biological Baikal-EM1 largely contributed to the adaptation of the 2nd and 3rd year plantsof G. orientalis cv. Gale to a new environment.

Keywords: photosynthesis pigments, vitamin C, flavonoids, Galega orientalis Lam., cv. Gale, introduction, Baikal-EM1.

 

REFERENCES

  1. Ignaczak S., Andrzejewska J., Sadowska K., Albrecht K.A. Fractional harvest of fodder galega for improved herbage nutritive value. Agronomy, 2021, 11(3): 480 CrossRef
  2. Domash V.I., Prokhorov V.N., Kandelinsksaya, O.L., Sharpio T.P., Zabreiko S.A., Grishchenko E.R. Biochemical peculiarities ofGalega orientalisLam.genotypes in Belorussia. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2013, 6: 105-111 CrossRef
  3. Baležentienė L., Spruogis V. Experience of fodder Galega (Galega orientalis Lam) and traditional fodder grasses use for forage production in organic farm. Veterinarija ir zootechnika (Vet. Med. Zoot.), 2011, 56(78): 19-26.
  4. Żarczyński P.J., Sienkiewicz S., Wierzbowska J., Krzebietke S.J. Fodder Galega — a versatile plant. Agronomy, 2021, 11(9): 1797 CrossRef
  5. POWO Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew, 2021. Available: https://powo.sci-ence.kew.org/taxon/urn:lsid:ipni.org:names:495682-1. Accessed: 09.02.2022.
  6. Österman J., Chizhevskaja E.P., Andronov E.E., Fewer D.P., Terefework Z., Roumilantseva M.L., Onichtchouk O.P., Dresler-Nurmi A., Simarov B.V., Dzyubenko N.I., Lindström K. Galega orientalis is more diverse than Galega officinalis in Caucasus—whole-genome AFLP analysis and phylogenetics of symbiosis-related genes. Molecular Ecology, 2011, 20(22): 4808-4821 CrossRef
  7. Barkalov V.Yu., Prokopenko S.V. Byulleten' Botanicheskogo sada-instituta, 2017, 17: 45-46 (in Russ.).
  8. Teleuţă A., Ţîţei V., Coşman S. Biological peculiarities and nutritional value of Astragalus galegiformis L. and Galega orientalis Lam. species in Moldova. J. Bot., 2015, VII(1-10): 126-133.
  9. Fairey N.A., Lefkovitch L.P., Coulman B.E., Fairey D.T., Kunelius T., McKenzie D.B., Michaud R., Thomas W.G. Cross-Canada comparison of the productivity of fodder galega (Galega orientalis Lam.) with traditional herbage legumes. Canadian Journal of Plant Science, 2000, 80(4): 793-800 CrossRef
  10. Iwabuchi K. Adaptability and cultivation of Leguminosae galega (Galega orientalis Lam.) in Hokkaido (usefulness, cultivation and feeding value of galega (Galega orientalis Lam.) in Hokkaido). Journal of the Japanese Grassland Society, 2012, 58(2): 113-121 CrossRef
  11. Gul'shina I.I. Osnovnye priemy vozdelyvaniya kozlyatnika vostochnogo (Galega orientalis Lam.) v odnovidovykh i smeshannykh posevakh v usloviyakh lesostepi TsChR. Avtoreferat kandidatskoi dissertatsii [The main methods of cultivation of Eastern goat's rue (Galega orientalis Lam.) in single-species and mixed crops in the conditions of the forest-steppe of the Central Chernozem region. PhD Thesis]. Moscow, 2000 (in Russ.).
  12. Kshnikatkina A.N., Gushchina V.A., Varlamov V.A., Galiullin A.A. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2003, 2: 101-107 (in Russ.).
  13. Faizov I.F. Produktivnost' kozlyatnika vostochnogo v chistykh i smeshannykh posevakh na obyknovennykh chernozemakh stepnoi zony Saratovskogo pravoberezh'ya. Avtoreferat kandidatskoi dissertatsii [Productivity of eastern goat's rue in pure and mixed crops on ordinary chernozems of the steppe zone of the Saratov right bank. PhD Thesis]. Penza, 2004 (in Russ.).
  14. Batyrshina E.R. Osnovnye tekhnologicheskie priemy vozdelyvaniya kozlyatnika vostochnogo v odnovidovykh i smeshannykh posevakh v usloviyakh Srednego Urala. Avtoreferat kandidatskoi dissertatsii [The main technological methods of cultivation of Eastern goat's rue in single-species and mixed crops in the conditions of the Middle Urals. PhD Thesis].Moscow, 2004 (in Russ.).
  15. Sagirova R.A. Ontogenetic morphogenesis of Galega orientalis Lam. as perspective forage plant. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2009, 4: 75-80 (in Russ.).
  16. Litvyak G.K. Produktivnost' kozlyatnika vostochnogo na korm i semena v zavisimosti ot normy vyseva i sposoba poseva v usloviyakh orenburgskogo Predural'ya. Avtoreferat kandidatskoi dissertatsii [The productivity of goat's rue oriental for feed and seeds, depending on the sowing rate and sowing method in the conditions of the Orenburg Cis-Urals. PhD Thesis]. Orenburg, 2002 (in Russ.).
  17. Zhukova M.A. Biokhimicheskaya kharakteristika populyatsii kozlyatnika vostochnogo (Galega orientalis Lam.). Avtoreferat kandidatskoi dissertatsii [Biochemical characteristics of populations of eastern goat's rue (Galega orientalis Lam.). PhD Thesis]. St. Petersburg, 2003 (in Russ.).
  18. Shymanska O.V., Vergun O.M., Rakhmetov D.B., Brindza J. Antiradical activity of plant extracts of Galega officinalis L. and G. orientalis Lam. Plant Introduction, 2018, 78: 12-19 CrossRef
  19. Darmohray L.M., Sedilo G.M., Gutyj B.V. Conceptual framework for the assessment of the nutritional and biological value of the plant Galega orientalis (Lam.). Scientific Messenger LNUVMB, 2017, 19(79): 9-12 CrossRef
  20. Pérez-Gálvez A., Viera I., Roca M. Carotenoids and chlorophylls as antioxidants. Antioxidants (Basel), 2020, 9(6): 505 CrossRef
  21. Akbari A., Jelodar G., Nazifi S., Sajedianfard J. An overview of the characteristics and function of vitamin C in various tissues: relying on its antioxidant function. Zahedan J. Res. Med. Sci., 2016, 18(11): e4037 CrossRef
  22. umar S., Pandey A.K. Chemistry and biological activities of flavonoids: an overview. The Scientific World Journal, 2013, 2013: Article ID 162750 CrossRef
  23. Apak R., Özyürek M., Güçlü K., Çapanoglu E. Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. J. Agric. Food Chem., 2016, 64(5): 997-1027 CrossRef
  24. Swapnil P., Meena M., Singh S.K., Dhuldhaj U.P., Harish, Marwal A. Vital roles of carotenoids in plants and humans to deteriorate stress with its structure, biosynthesis, metabolic engineering and functional aspects. Current Plant Biology, 2021, 26: 100203 (doi.org/10.1016/j.cpb.2021.100203">CrossRef
  25. Tyutereva E.V., Ivanova A.N., Voitsekhovskaya O.V. Trudy Mezhdunarodnoi nauchnoi konferentsii «Botanika: istoriya, teoriya, praktika (k 300-letiyu osnovaniya Botanicheskogo instituta im. V.L. Komarova Rossiiskoi akademii nauk» [Proc. Int. Conf. «Botany: history, theory, practice (to the 300th anniversary of the founding of the V.L. Komarov Botanical Institute of the Russian Academy of Sciences»]. St. Petersburg, 2014: 190-203 (in Russ.).
  26. Gest N., Gautier H., Stevens R. Ascorbate as seen through plant evolution: the rise of a successful molecule. Journal of Experimental Botany, 2013, 64(1): 33-53 CrossRef
  27. Ivanov B.N. Biokhimiya, 2014, 79(3): 364-372 (in Russ.).
  28. Tóth S.Z., Nagy V., Puthur J.T., Kovács L., Garab G. The physiological role of ascorbate as photosystem II electron donor: protection against photoinactivation in heat-stressed leaves. Plant Physiology, 2011, 156(1): 382-392 CrossRef
  29. Trubitsin B.V., Mamedov M.D., Semenov A.Y., Tikhonov A.N. Interaction of ascorbate with photosystem I. Photosynthesis Research, 2014, 122: 215-231 CrossRef
  30. Ivanov B., Asada K., Kramer D.M., Edwards G. Characterization of photosynthetic electron transport in bundle sheath cells of maize. I. Ascorbate effectively stimulates cyclic electron flow around PSI. Planta, 2005, 220: 572-581 CrossRef
  31. Zverev Ya.F. Obzory po klinicheskoi farmakologii i lekarstvennoi terapii, 2017, 15(4): 5-13 CrossRef (in Russ.).
  32. Vergun O., Shymanska O., Rakhmetov D., Grygorieva O., Ivanišová E., Brindza J. Parameters of antioxidant activity of Galega officinalis L and Galega orientalis Lam. (Fabaceae Lindl.) plant raw material. Potravinarstvo Slovak Journal of Food Sciences, 2020, 14: 125-134 CrossRef
  33. Baležentienė L. Bioassay of phenolics accumulation and activity in fodder galega at different growth stages. Zemdirbyste-Agriculture, 2009, 96(1): 170-181.
  34. Lapina E.A., Shepeleva L.F. Vestnik Orenburgskogo gosudarstvennogo universiteta, 2014, 6(167): 30-35 (in Russ.).
  35. Moiseeva E.A., Shepeleva L.F. Vestnik KrasGAU, 2016, 8: 9-14 (in Russ.).
  36. Moiseeva E.A., Shepeleva L.F., Kravchenko I.V. Vestnik KamchatGTU, 2016, 37: 70-76 (doi:10.17217/2079-0333-2016-37-70-76">CrossRef (in Russ.).
  37. Moiseeva E.A., Bordei R.Kh. Vestnik KrasGAU, 2017, 10: 140-147 (in Russ.).
  38. Moiseeva E.A., Bordei R.Kh., Samoilenko Z.A. Izvestiya Komi nauchnogo tsentra Ural'skogo otdeleniya Rossiiskoi akademii nauk, 2018, 3(35): 54-60 (in Russ.).
  39. Moiseeva E.A. Materialy IV Mezhdunarodnoi nauchno-prakticheskoi konferentsii «Ekologiya i geografiya rastenii i rastitel'nykh soobshchestv» [Proc. Int. Conf. «Ecology and geography of plants and plant communities»]. Ekaterinburg, 2018: 567-570 (in Russ.).
  40. Dospekhov B.A. Metodika polevogo opyta (s osnovami statisticheskoi obrabotki rezul'tatov issledovanii) [Methods of field trials]. Moscow, 1985 (in Russ.).
  41. Metodika polevykh opytov s kormovymi kul'turami /Pod redaktsiei A.S. Mitrofanova, YU.P. Novoselova, G.D. Khar'kova [Methods of field experiments with fodder crops. A.S. Mitrofanov, Yu.P. Novoselov, G.D. Kharkov (eds.)]. Moscow, 1971 (in Russ.).
  42. Rabotnov T.A. Raboty v oblasti izucheniya zhiznennogo tsikla mnogoletnikh travyanistykh rastenii v estestvennykh tsenozakh. Voprosy botaniki [Works in the field of studying the life cycle of perennial herbaceous plants in natural cenoses. Botanical questions]. Moscow-Leningrad, 1954, vyp. 2 (in Russ.).
  43. Fedorov A.A., Kirpichnikov M.E., Artyushenko Z.T. Atlas po opisatel'noi morfologii vysshikh rastenii. List [Atlas on the descriptive morphology of higher plants. Sheet]. Moscow-Leningrad, 1956 (in Russ.).
  44. Fedorov A.A., Kirpichnikov M.E., Artyushenko Z.T. Atlas po opisatel'noi morfologii vysshikh rastenii. Stebel' i koren' [Atlas on the descriptive morphology of higher plants. Stem and root]. Moscow-Leningrad, 1962 (in Russ.).
  45. Fedorov A.A., Kirpichnikov M.E., Artyushenko Z.T. Atlas po opisatel'noi morfologii vysshikh rastenii. Sotsvetie [Atlas on the descriptive morphology of higher plants. Inflorescence]. Moscow-Leningrad, 1979 (in Russ.).
  46. Fedorova A.I., Nikol'skaya A.N. Praktikum po ekologii i okhrane okruzhayushchei sredy [Workshop on ecology and environmental protection]. Moscow, 2003 (in Russ.).
  47. Mokronosov A.T. Neftegazodobycha i okruzhayushchaya sreda [Oil and gas production and the environment]. Moscow, 1994 (in Russ.).
  48. Maslova T.G., Popova I.A. Adaptive properties of the plant pigment systems. Photosynthetica, 1993, 29(2): 195-203.
  49. Lichtenthaler H.K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Methods in enzymology, V. 148. L. Packer, R. Douce (eds.). Academic Press, San Diego, 1987: 350-382 CrossRef
  50. Hewitt E.J., Dickes G.J. Spectrophotometric measurements on ascorbic acid and their use for the estimation of ascorbic acid and dehydroascorbic acid in plant tissues. Biochemical Journal, 1961, 78(2): 384-391 CrossRef
  51. Chupakhina G.N. Sistema askorbinovoi kisloty rastenii [Plant ascorbic acid system]. Kaliningrad, 1997 (in Russ.).
  52. Flavinovye glikozidy. Metody vydeleniya, ochistki, razdeleniya i analiza [Flavin glycosides. Methods for isolation, purification, separation and analysis]. Leningrad, 1991 (in Russ.).
  53. Dymova O.V., Golovko T.K. Fiziologiya rastenii, 2019, 66(3): 198-206 CrossRef (in Russ.).
  54. Ladygin V.G., Shirshikova G.N. Zhurnal Obshchei Biologii, 2006, 67(3): 163-189 (in Russ.).
  55. Ivanova L.A., Ronzhina D.A., Yudina D.A., Zolotareva N.V., Kalashnikova I.V., Ivanova D.A. Fiziologiya rastenii, 2020, 67(3): 278-288 CrossRef (in Russ.).
  56. Zhang H., Zhong H., Wang J., Sui X., Xu N. Adaptive changes in chlorophyll content and photosynthetic features to low light in Physocarpus amurensis Maxim and Physocarpus opulifolius “Diabolo”. PeerJ, 2016, 4: e2125 CrossRef
  57. Jansson S. Light-harvesting complex (LHC) I and II: pigments and proteins. In: Encyclopedia of biological chemistry. Elsevier, New York, 2004: 567-570 CrossRef
  58. Nahakpam S. Chlorophyll stability: a better trait for grain yield in rice under drought. Indian Journal of Ecology, 2017, 44(special issue-4): 77-82.
  59. Maglovski M., Gersi Z., Rybansky L., Bardacova M., Moravcikova J., Bujdos M., Dobrikova A., Apostolova E., Kraic J., Blehova A., Matusikova I. Effect of nutrition on wheat photosynthetic pigment responses to arsenic stress. Polish Journal of Environmental Studies, 2019, 28(3): 1821-1829 CrossRef
  60. Larcher W. Physiological plant ecology. Ecophysiology and stress physiology of functional groups. Springer-Verlag, Berlin, Heidelberg, New-York, 2003.
  61. Golovko T.K., Dal'ke I.V., Dymova O.V., Zakhozhii I.G., Tabalenkova G.N. Izvestiya Komi nauchnogo tsentra UrO RAN, 2010, 1: 39-46 (in Russ.).
  62. Surai P., Fisinin V.I. Natural antioxidant in hens' embryogenesis and antistress defense in postnatal development (review).Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2013, 2: 3-18 CrossRef
  63. Ostrenko K.S., Galochkin V.A, Koloskova E.M., Galochkina V.P. Problemy biologii produktivnykh zhivotnykh, 2017, 2: 74-86 (in Russ.).
  64. Voitekhovich M.A., Kuchinskaya V.A, Novosel'skii I.Yu., Griusevich P.V., Samokhina V.V., Matskevich V.S., Sokolik A.I., Demidchuk V.V. Zhurnal Belorusskogo Gosudarstvennogo Universiteta. Biologiya, 2018, 2: 27-38 (in Russ.).
  65. Matsui T. Vitamin C nutrition in cattle. Asian-Australas. J. Anim. Sci., 2012, 25(5): 597-605 CrossRef
  66. Zen'kova N.N., Razumovskii N.P., Subbotina I.A. Uchenye zapiski UO VGAVM, 2010, 46, 2(2): 122-127 (in Russ.).
  67. Kravchenko I.V., Moiseeva E.A., Ustinova M.V., Shepeleva L.F. Yug Rossii: ekologiya, razvitie, 2021, 16(1): 36-44 CrossRef (in Russ.).
  68. Filatov V.I., Mel'nikov V.N., Luginina T.F., Slabzheninova N.V. Plodorodie, 2010, 4: 36-38 (in Russ.).
  69. Ghasemzadeh A., Nasiri A., Jaafar H.Z., Baghdadi A., Ahmad I. Changes in phytochemical synthesis, chalcone synthase activity and pharmaceutical qualities of Sabah snake grass (Clinacanthus nutans L.) in relation to plant age. Molecules, 2014, 19(11): 17632-17648 CrossRef
  70. Kirsanova N.V. Ekologo-biologicheskie osobennosti Eupatorium cannabinum L. v svyazi s introduktsiei v podzone yuzhnoi taigi Zapadnoi Sibiri. Avtoreferat kandidatskoi dissertatsii [Ecological and biological features of Eupatorium cannabinum L. in connection with the introduction in the subzone of the southern taiga of Western Siberia. PhD Thesis]. Tomsk, 2012 (in Russ.).
  71. Mutalib L. Effect of growth age period on biochemical composition of Plantago major plant. International Journal of Current Research and Review, 2015, 7(19): 6-10.
  72. Eryashev A.P., Eryashev P.A. The influence of pesticides and Albite on the photosynthetic activity and seed yield of eastern galega (Galega orientalis). Journal of Pharmaceutical Sciences and Research, 2018, 10(12): 3422-3425.
  73. Tian D., Wang F., Duan M., Cao L., Zhang Y., Yao X., Tang J, Coumarin analogues from the Citrus grandis (L.) osbeck and their hepatoprotective activity. Journal of Agricultural and Food Chemistry, 2019, 67(7): 1937-1947 CrossRef
  74. Yamini B., Poppenga R.H., Braselton W.E., Judge L.J. Dicoumarol (moldy sweet clover) toxicosis in a group of Holstein calves. Journal of Veterinary Diagnostic Investigation, 1995, 7: 420-422.
  75. Smith B.N., Dilger R.N. Immunomodulatory potential of dietary soybean-derived isoflavones and saponins in pigs. Journal of Animal Science, 2018, 96(4): 1288-1304 CrossRef
  76. Chaudhary S.K., Rokade J.J., Aderao G.N., Singh A., Gopi M., Mishra A., Raje K. Saponin in poultry and monogastric animals: a review. International Journal of Current Microbiology and Applied Sciences, 2018, 7(7): 3218-3225 CrossRef
  77. Jensen T.L. Livestock foraging behavior in response to sequence and interactions among alkaloids, tannins and saponins. Utah State University, 2012.
  78. Symanowicz B., Kalembasa S., Jaremko D., Niedbała M. Effect of nitrogen application and year on concentration of Cu, Zn, Ni, Cr, Pb and Cd in herbage of Galega orientalis Lam. Plant Soil Environ., 2015, 61(1): 11-16 CrossRef 
  79. Symanowicz, B., Kalembasa, S., Jaremko, D., Niedbała, M. Effect of nitrogen fertilization of Galega orientalis Lam. on the yield and content of K, Na, Ca and Mg in the plant and soil. Environmental Protection and Natural Resources, 2015, 26(2): 15-20 CrossRef  
  80. Vinogradova Y. Bio-morphological characters of alien legume species, influencing their invasion in natural plant communities. American Journal of Plant Sciences, 2016, 7(16): 2390-2398 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)