doi: 10.15389/agrobiology.2019.1.3eng

UDC 632



D.Z. Bogoutdinov1, T.B. Kastalyeva2, N.V. Girsova2, L.N. Samsonova3

1Samara State Agricultural Academy, 2, ul. Uchebnaya, pos. Ust’-Kinel’skii, Kinel’, 446442 Russia, e-mail (✉ corresponding author);
2All-Russian Research Institute of Phytopathology, 5, ul. Institute, pos. Bol’shie Vyazemy, Odintsovskii Region, Moscow Province, 143050 Russia, e-mail,;
3Petrovskaya Akademy of Sciences and Arts, 7. ul. Karbysheva, St. Peterburg, 194021 Russia

Bogoutdinov D.Z.
Girsova N.V.
Kastalyeva T.B.

Received July 18, 2018


Phytoplasma diseases were known long before the discovery of their agent. Since the early 1930s in the former Soviet Union the infectious nature of the disease known under the name of “stolbur of tomato” has been recognized. Attempts were made to find vectors of the disease (I.K. Korachewski, 1934; V.L. Ryzhkov et al., 1934). In 1945 it was found that planthopper Hyalesthes obsoletus can be the disease vector (K. Sukhov et al., 1946). Searching for an infec-tious agent of plant diseases with symptoms of dwarfism, yellowing, damaged leaves and genera-tive organs, which was unable to grow on artificial nutrient media was unsuccessfully conducted for several decades in our country and abroad. The discovery was made only in 1967 by Japanese researchers (Y. Doi et al., 1967). The causative agent of the disease, the unknown earlier phyto-pathogen from Mollicutes class, was similar to mycoplasma pathogens of animals. Later it was found that the life cycle of phytoplasmas is associated with the phloem cells of the plants, in which they multiply, and with vector insects of Hemiptera order which are feeding plant juice and able not only to support the phytoplasma reproduction in their body, but even transmit phy-toplasma to the offspring. Phytoplasmas, like other Mollicutes, have no cell wall; they have a minimal genome known to cellular organisms, which causes their obligate parasitism. In the ex-USSR, phytoplasma disease was extensively studied by electron microscopy, immunological meth-ods, and phytoplasma were successfully cultured on artificial nutrient media. Three decades later Italian researchers managed to culture the infective agent on artificial media and confirmed its belonging to phytoplasma by DNA sequencing (А. Bertaccini et al., 2010; N. Contaldo et al., 2012, 2013). In 1990s, a great step forward was made due to molecular methods of phytoplasma diagno-sis and study. Phytoplasmas’ taxonomy was developed based on the conservative 16S ribosomal RNA gene and further elaborated with the involvement of other genes having both highly and less conserved sequences (I.-M. Lee et al., 1993; B. Schneider et al., 1993, 1997; I.-M. Lee et al. 1998, 2010; М. Martini et al., 2007). The next important step was a discovery of virulence factors of phytoplasma affecting host plants and making them more attractive to insect vectors naturally involved in the spread of phytoplasmas. In recent years, a lot of genomic data has been obtained for various phytoplasmas; attention is paid to elucidate phytoplasma metabolism which is im-portant to understand the host—pathogen—vector interactions (К. Oshima et al., 2004; Х. Bai et al., 2006; А. Hoshi et al., 2009; А. Sugio et al., 2011; А. MacLean et al., 2011; К. Sugawara et al., 2013; Z. Orlovskis et al., 2016). In Russia, molecular methods have allowed the researchers to re-veal the phytoplasma nature of a group of diseases with unclear etiology that gives the key to control of these widespread and harmful diseases. Prevention is the primary means of controlling phytoplasma diseases, including the use of healthy planting material, resistant varieties, methods aimed at spatial isolation from sources of infection, weed eradication, and the use of bioprepara-tion and bioagents capable of producing tetracycline antibiotics.

Keywords: phytoplasma, phytoplasma diseases, yellows, witches’-broom, stolbur, phytoplasma vectors, phytoplasma taxonomy, phytoplasma marker genes.




  1. Edward D.G. The pleuropneumonia group of organisms: a review, together with some new observations. J. Gen. Microbiol., 1954, 10: 27-64.
  2. Yachevskii A.A. Materialy po mikologii i fitopatologii, 1926, 5(2): 1-12 (in Russ.).
  3. Korachevskii I.K. V sbornike: Virusnye bolezni v Krymu i na Ukraine /Pod redaktsiei V.L. Ryzhkova [Viral diseases in Crimea and Ukraine. V.L. Ryzhkov (ed.)]. Simferopol', 1934: 39-58 (in Russ.).
  4. Ryzhkov V.L., Korachevskii I.K. V sbornike: Virusnye bolezni v Krymu i na Ukraine /Pod redaktsiei V.L. Ryzhkova [Viral diseases in Crimea and Ukraine. V.L. Ryzhkov (ed.)]. Simferopol', 1934: 7-30 (in Russ.).
  5. Korachevskii I.K. V sbornike: Virusnye bolezni rastenii i mery bor'by s nimi [Viral plant diseases and control measures]. Moscow-Leningrad, 1941: 255-263 (in Russ.).
  6. Sukhov K.S., Vovk A.M. Doklady AN SSSR, 1946, 53(2): 153-156 (in Russ.).
  7. Sukhov K.S., Vovk A.M. Stolbur paslenovykh [Solanum stolbur]. Moscow-Leningrad, 1949 (in Russ.).
  8. Razvyazkina G.M. Mikrobiologiya, 1950, 19(3): 256-259 (in Russ.).   
  9. Korachevskii I.K., Semen'kova A.V. V sbornike: Virusnye bolezni rastenii /Pod redaktsiei M.S. Dunina [Plant viral diseases. M.S. Dunin (ed.)]. Moscow, 1938, sb. 2: 118-124 (in Russ.).
  10. Poner V.M. V sbornike: Virusnye bolezni rastenii i mery bor'by s nimi [Viral plant diseases and control measures]. Moscow-Leningrad, 1941: 227-244 (in Russ.).
  11. Sukhov K.S., Vovk A.M. Stolbur paslenovykh i mery bor'by s nim [Solanum stolbur and control measures]. Moscow, 1946: 31-37 (in Russ.).
  12. Sukhov K.S., Razvyazkina G.M. Biologiya virusov i virusnye bolezni rastenii [Biology of viruses and plant viral diseases]. Moscow, 1955: 49-53 (in Russ.).
  13. Korachevskii I.G. Trudy VASKHNIL, 1936, 5: 82-91 (in Russ.).
  14. Gol'din M.I., Parievskaya A.P. Mikrobiologiya, 1950, 11(6): 405-415 (in Russ.).
  15. Protsenko A.E. V sbornike: Virusnye bolezni sel'skokhozyaistvennykh rastenii i mery bor'by s nimi [Viral agricultural plants diseases and control measures]. Moscow, 1964: 307-311 (in Russ.).
  16. Milkus B., Clair D., Idir S., Habili N., Boudon-Padieu E. First detection of stolbur phytoplasms in grapevines (Vitis vinifera cv. Chardonnay) affected with grapevine yellows in the Ukraine. Plant Pathology, 2005, 54(2): 236 CrossRef
  17. Serbinov B.I. V sbornike: Virusnye bolezni rastenii i mery bor'by s nimi [Viral plant diseases and control measures].  Moscow-Leningrad, 1941: 264-268 (in Russ.).
  18. Khachatryan G.A. Izvestiya AN Armyanskoi SSR, 1950, 3(12): 1113-1120 (in Russ.).
  19. Eristavi E.M., Sakvarelidze N.A., Titvinidze S.S. Trudy Instituta zashchity rastenii AN Gruzinskoi SSR, 1952, 8: 111-141 (in Russ.).
  20. Samudzheva E.M. Trudy Instituta zashchity rastenii AN Gruzinskoi SSR, 1953, 9: 15-28 (in Russ.).
  21. Gol'din M.I., Bagdasaryan A.E. Zashchita rastenii, 1969, 2: 22-23 (in Russ.).
  22. Balakishiyeva G., Danet J.L., Gurbanov M., Mamedov A., Kheyr-Pour A., Fossac X. First report of phytoplasma infections in several temperate fruit trees and vegetable crops in Azerbaijan. J. Plant Pathology, 2010, 92(4 Supplement): 115.
  23. Gol'din M.I., Yurchenko M.A. Trudy Instituta mikrobiologii i virusologii AN Kazakhskoi SSR, 1961, 5: 139-147 (in Russ.).
  24. Isamukhamedov M.Z. Uzbekskii biologicheskii zhurnal, 1969, 3: 13-15 (in Russ.).
  25. Vlasov Yu.I. Zashchita rastenii, 1960, 1: 22-23 (in Russ.).
  26. Samudzheva E.M. Trudy Instituta zashchity rastenii AN Gruzinskoi SSR, 1949, 6: 161-162 (in Russ.).
  27. Zamalieva F.F., Zaitseva T.V., Ryzhikh L.Yu., Salikhova Z.Z. Zashchita kartofelya, 2015, 2: 3-9 (in Russ.).
  28. Bogoutdinov D.Z. Vestnik zashchity rastenii, 2012, 1: 74-75 (in Russ.).
  29. Bogoutdinov D.Z. Zashchita i karantin rastenii, 2012, 5: 45 (in Russ.).
  30. Fominykh T.S., Bogoutdinov D.Z. Diagnostika virusnykh, viroidnykh i fitoplazmennykh boleznei ovoshchnykh kul'tur i kartofelya [Diagnosis of viral, viroid and phytoplasmic diseases of vegetable crops and potatoes]. St. Petersburg—Pushkin, 2017 (in Russ.).
  31. Vovk A.M., Nikiforova G.S. Doklady AN SSSR, 1955, 102(4): 839-840 (in Russ.).
  32. Kunkel L.O. Insect transmission of peach yellows. Contribution Boyce Thompson Institute, 1933, 5: 19-28.
  33. Hartzell A. Movement of intracellular bodies associated with peach yellows. Contribution Boyce Thompson Institute, 1937, 8(5): 375-388.
  34. Hartzell A. Bionomics of the plum and peach leafhopper, Macropsis trimaculata. Contribution Boyce Thompson Institute, 1937, 9: 121-136.
  35. Maramorosch K. Direct evidence of the multiplication of aster-yellows virus in its insect vector. Phytopathology, 1952, 42: 59-64.
  36. Maramorosch K. Viruses that infect and multiply in both plants and insects. Transactions New York Academy Sciences (Serie II), 1958, 20: 383-395.
  37. Maramorosch K. Historical reminiscences of phytoplasma discovery. Bulletin of Insectology, 2011, 64(Supplement): 5-8.
  38. Chanock R., Hayflick L., Barile M.F. Growth on artificial medium of an agent associated with atypical pneumonia and its identification as a PPLO. PNAS USA, 1962, 48: 41-49.
  39. Doi Y., Teranaka M., Yora K., Asuyama H. Mycoplasma or PLT grouplike microrganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches’ broom, aster yellows or pawlownia witches’ broom. Japanese Journal of Phytopathology, 1967, 33(4), 259-266 CrossRef
  40. Ishiie T., Doi Y., Yora K., Asuyama H. Suppressive effects of atibiotics of tetracycline group on symptom developement of mulberry dwarf disease. Japanese Journal of Phytopathology, 1967, 33, 267-275 CrossRef
  41. Nasu S., Sugiura M., Wakimoto T., Iida T.T. On the etiologic agent of rice yellow dwarf disease. Annals Phytopathological Society Japan, 1967, 33: 343-344.
  42. Giannotti J., Marchou G., Vago C. Microorganisms de type mycoplasma dans les cellules liberiennes de Malus sylvestris L., atteinte de la maladie des proliferations. Comte Rendu Academie Science, 1968, 267: 78-77.
  43. Maramorosch K., Hirumi H., Plavsic-Banjac B. Artifact pseudocolonies on solid agar media inoculated with aster yellows and healthy plant material. Phytopathology, 1971, 61: 902.
  44. Vlasov Yu.I. Virusnye i mikoplazmennye bolezni rastenii [Viral and mycoplasmal plant diseases]. Moscow, 1992 (in Russ.).
  45. Vlasov Yu.I. Prirodnaya ochagovost' virusnykh i fitoplazmennykh (mikoplazmennykh) boleznei rastenii [Natural foci of viral and phytoplasmic (mycoplasmal) plant diseases]. St. Petersburg, 1999 (in Russ.).
  46. Bogoutdinov D.Z. Fitoplazmy kartofelya i metody ikh izucheniya [Potato phytoplasmas and methods for their study]. Samara, 2000 (in Russ.).    
  47. Vlasov Yu.I., Yakutkina T.A., Bogatyrenko T.N., Samsonova L.N. Osnovnye printsipy i metody diagnostiki mikoplazmennykh boleznei rastenii (Metodicheskie ukazaniya) [Basic principles and methods of mycoplasmal plant diseases diagnosis (Methodical instructions)]. Leningrad, 1977 (in Russ.).
  48. Samsonova L.N., Tsyplenkov A.E., Yakutkina T.A. Diagnostika virusnykh i fitoplazmennykh boleznei ovoshchnykh kul'tur i kartofelya [Diagnosis of viral and phytoplasmic diseases of vegetable crops and potatoes]. St. Petersburg, 2001 (in Russ.).    
  49. Paghosyan A., Lebsky V. Aislamiento y studio ultrastructural de tres cepas de fitoplasmas causanties de enferrmedades tipo “stolbur” en Solanaceae. Fitopatologia Colombiana, 2004, 28(1): 21-30.
  50. Skripal' I.G., Malinovskaya L.A. Mikrobiologicheskii zhurnal, 1983, 45(6): 64-71 (in Russ.).
  51. Bertaccini A., Contaldo N., Calari A., Paltrinieri S., Windsor H.M., Windsor D. Preliminary results of axenic growth of phytoplasmas from micropropagated infected periwinkle shoots. 18th Congress of the International Organization for Mycoplasmology (IOM). Chianciano Terme, 2010: 147-153.
  52. Contaldo N., Bertaccini A., Paltrinieri S., Windsor H.M., Windsor D. Axenic sulture of plant pathogenic phytoplasmas. Phytopathologia Mediterranea, 2012, 51(3): 607-617.
  53. Contaldo N., Bertaccini A., Paltrinieri S., Windsor D., Windsor H. Cultivation of several phytoplasmas from a micropropagated plant collection. Petria, 2013, 23: 13-18.
  54. Lee I.-M., Hammond R.W., Davis R.E., Gundersen D.E. Universal amplification and analysis of pathogen 16S rDNA for classification and identification of mycoplasma-like organisms. Phytopathology, 1993, 83: 834-842 CrossRef
  55. Schneider B., Ahrens U., Kirkpatrick B.C., Seemüller E. Classification of plant-pathogenic mycoplasma-like organisms using restriction-site analysis of PCR-amplified 16S rDNA. J. Gen. Microbiol., 1993, 139(3): 519-527 CrossRef
  56. Lee I.-M., Gundersen-Rindal D.E., Davis R.E., Bartoszyk I.M. Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. International Journal of Systematic and Evolutionary Microbiology, 1998, 48: 1153-1169 CrossRef
  57. Wei W., Davis R.E., Lee I.-M., Zhao Y. Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. International Journal of Systematic and Evolutionary Microbiology, 2007, 57: 1855-1867 CrossRef
  58. PM 7/133 (1) Generic detection of phytoplasmas. OEPP/EPPO Bulletin, 2018, 48(3): 414-424 CrossRef
  59. Gundersen D.E., Lee I.-M., Rehner S.A., Davis R.E., Kingsbury D.T. Phytogeny of mycoplasmalike organisms (phytoplasmas): a basis for their classification II. J. Bacteriology, 1994, 176(17): 5244-5254 CrossRef
  60. Girsova N.V., Bottner-Parker K.D., Bogoutdinov D.Z., Meshkov Y.I., Mozhaeva K.A., Kastalyeva T.B., Lee I.-M. Diverse phytoplasmas associated with potato stolbur and other related potato diseases in Russia. Eur. J. Plant Pathol., 2016, 145: 139-153 CrossRef
  61. Girsova N.V., Bottner-Parker K.D., Bogoutdinov D.Z., Kastalyeva T.B., Meshkov Y.I., Mozhaeva K.A., Lee I.-M. Diverse phytoplasmas associated with leguminous crops in Russia. Eur. J. Plant Pathol., 2017, 149(3): 599-610 CrossRef
  62. Kastal'eva T.B., Bogoutdinov D.Z., Bottner-Parker K.D., Girsova N.V., Lee I.-M. Diverse phytoplasmas associated with diseases in various crops in russia — pathogens and vectors. Agricultural Biology, 2016, 51(3): 101-109 CrossRef
  63. Martini M., Lee I.-M., Bottner K.D., Zhao Y., Botti S., Bertaccini A., Harrison N.A., Carraro L., Marcone C., Khan J., Osler R. Ribosomal protein gene-based filogeny for finer differentiation and classification of phytoplasmas. International Journal of Systematic and Evolutionary Microbiology, 2007, 57: 2037-2051 CrossRef
  64. Schneider B., Gibb K.S., Seemüller E. Sequence and RFLP analysis of the elongation factor Tu gene used in differentiation and classification of phytoplasmas. Microbiology, 1997, 143: 3381-3389 CrossRef
  65. Langer M., Maixner M. Molecular characterisation of grapevine yellows associated phytoplasmas of the stolburgroup based on RFLP-analysis of non-ribosomal DNA. Vitis, 2004, 43: 191-199.
  66. Pasquini G., Ferretti L., Gentili A., Bagnoli B., Cavalieri V., Barba M. Molecular characterization of stolbur isolates collected in grapevines, weeds and insects in central and southern Italy. Bulletin of Insectology, 2007, 60: 355-356.
  67. Lee I.-M., Bottner K.D., Zhao Y., Davis R.E., Harrison N.A. Phylogenetic analysis and delineation of phytoplasmas based on SecY gene sequences. International Journal of Systematic and Evolutionary Microbiology, 2010, 60: 2887-2897 CrossRef
  68. Mitrovi? J., Contaldo N., Paltrinieri S., Mejia J.F., Mori N., Bertaccini A., Duduk B. The use of groEL gene for characterisation of aster yellows phytoplasmas in field collected samples. Bulletin of Insectology, 2011, 64(Supplement): 17-18.
  69. Smart C.D., Schneider B., Blomquist C.L., Guerra L.J., Harrison N.A., Ahrens U., Lorenz K.H., Seemüller E., Kirkpatrick B.C. Phytoplasma-specific PCR primers based on sequences of the 16S-23S rRNA spacer region. Appl. Environ. Microbiol., 1996, 62: 2988-2993.
  70. Lenz O., Markova J., Sarkisova T. Discriminating 16Sr groups of phytoplasmas by an oligonucleotide microarray targeting 16S-23S spacer region. Bulletin of Insectology, 2011, 64(Supplement): 31-32.
  71. Cimerman A., Pacifico D., Salar P., Marzachi C., Foissac X. Striking diversity of vmp1, a variable gene encoding a putative membrane protein of the Stolbur phytoplasma. Appl. Environ. Microbiol., 2009; 75: 2951-2957 CrossRef
  72. Fabre A., Danet J.-L., Foissac X. The stolbur phytoplasma antigenic membrane protein gene stamp is submitted to diversifying positive selection. Gene, 2011, 472: 37-41 CrossRef
  73. Oshima K., Kakizawa S., Nishigawa H., Jung H.-Y., Wei W., Suzuki S., Arashida R., Nakata D., Miyata S., Ugaki M., Namba S. Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nature Genetics, 2004, 36: 27-29 CrossRef
  74. Hoshi A., Oshima K., Kakizawa S., Ishii Y., Ozeki J., Hashimoto M., Komatsu K., Kagiwada S. A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. PNAS USA, 2009, 106(15): 6416 -6421 CrossRef
  75. Sugawara K., Honma Y., Komatsu K., Himeno M., Oshima K., Namba S. The alteration ofplant morphology by small peptides released from the proteolytic processing of the bacterial peptide TENGU. Plant Physiol., 2013, 162(4): 2004-2015 CrossRef
  76. Bai X., Zhang J., Ewing A., Miller S.A., Radek A.J., Shevchenko D.V., Tsukerman K., Walunas T., Lapidus A., Campbell J.W., Hogenhout S.A. Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J. Bacteriol., 2006, 188: 3682-3696 CrossRef
  77. Sugio A., Kingdom H.N., MacLean A.M., Grieve V.M., Hogenhout S.A. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. PNAS USA, 2011, 108(48): 1254-1263 CrossRef
  78. MacLean A.M., Sugio A., Makarova O.V., Findlay K.C., Grieve V.M., Toth R., Nicolaisen M., Hogenhout S.A. Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants. Plant Physiol., 2011, 157(2): 831-841 CrossRef
  79. Orlovskis Z., Hogenhout S.A. A bacterial parasite effector mediates insect vector attraction in host plants independently of developmental changes. Frontier Plant Science, 2016, 7: 885 CrossRef
  80. Saccardo F., Martini M., Palmano S., Ermacora P., Scortichini M., Loi N., Firrao G. Genome drafts of four phytoplasma strains of the ribosomal group 16SrIII. Microbiology, 2012, 158(11): 2805-2814 CrossRef
  81. Kube M., Schneider B., Kuhl H., Dandekar T., Heitmann K., Migdoll A.M., Reinhardt R., Seemuller E. The linear chromosome of the plant-pathogenic mycoplasma ‘Candidatus Phytoplasma mali’. BMC Genomics,2008, 9: 306 CrossRef
  82. Kube M. Insights in host dependency encoded within phytoplasma genomes. Bulletin of Insectology, 2011, 64(Supplement): 9-11.
  83. Lee I.-M., Shao J., Bottner-Parker K.D., Gundersen-Rindal D.E., Zhao Y., Davis R.E. Draft genome sequence of “Candidatus Phytoplasma pruni” strain CX, a plant-pathogenic bacterium. Genome Announcements, 2015, 3(5): e01117-15 CrossRef
  84. Chang S.-H., Cho S.-T., Chen C.-L., Yang J.-Y., Kuo C.-H. Draft genome sequence of a 16SrII-A subgroup phytoplasma associated with purple coneflower (Echinacea purpurea) witches’ broom disease in Taiwan. Genome Announcements, 2015, 3(6): e01398-15 CrossRef
  85. Zamorano A., Fiore N. Draft genome sequence of 16SrIII-J phytoplasma, a plant pathogenic bacterium with a broad spectrum of hosts. Genome Announcements, 2016, 4(3): e00602-16 CrossRef
  86. Fischer A., Santana-Cruz I., Wambua L., Olds C., Midega C., Dickinson M., Kawicha P., Khan Z., Masiga D., Jores J., Schneider B. Draft genome sequence of “Candidatus Phytoplasma oryzae” strain Mbita1, the causative agent of Napier grass stunt disease in Kenya. Genome Announcements, 2016, 4(2): e00297-16 CrossRef






Full article PDF (Rus)

Full article PDF (Eng)