doi: 10.15389/agrobiology.2017.1.25eng

UDC 633.491:664.22:631.523:577.21

Acknowledgements:
Supported by Budget Project of Institute of Cytology and Genetics SB RAS for Potato Program.

 

TARGET GENES FOR DEVELOPMENT OF POTATO (Solanum tuberosum L.)CULTIVARS WITH DESIRED STARCH PROPERTIES (review)

V.K. Khlestkin, S.E. Peltek, N.A. Kolchanov

Federal Research Center Institute of Cytology and Genetics SB RAS, Federal Agency of Scientific Organizations, 10, prosp. Akademika Lavrent’eva, Novosibirsk, 630090 Russia, e-mail khlestkin@bionet.nsc.ru, peltek@bi-onet.nsc.ru, kol@bionet.nsc.ru

ORCID:
Kolchanov N.A.orcid.org/0000-0001-6800-8787

Received November 7, 2016

 

Starch is an important organic feedstock easily available for human in industrial scale. Optimal physical and chemical properties of amylose and amylopectin molecules comprising starch significantly vary in dependence on the technical scope. Molecular and supramolecular composition as well as structure of the molecules are genetically regulated and may be considered as traits for selection. Combining genes in certain composition one may program potato plant to produce starch of predetermined structure and properties. The main goal of the review is analysis of chain sequence industrial application→starch properties→enzymes→coding genes and discussion of genes and gene compositions programming synthesis of certain starch modifications in potato tubers. Potato genotype may be changed in a controlled manner by classical combination breeding or marker-assisted selection as well as genetic engineering approaches, including the new breakthrough genome editing technologies. Starch biosynthetic pathway in tuber cells requires participation of at least seven main enzymes in cytosol and plastids and of about ten more enzymes in starch granule surface or inner space. Thus, granule-bound starch synthase gene (GBSS) knockout drastically increases amylopectin content up to > 98 %. That is the namely reason why cultivars with GBSS knockout turned out the first genetically modified forms of potato with corrected starch, field-tested as a technical crop. High amylopectin starch gives gels with high optical clearance, stability during centrifugation, and demonstrates valuable increase of maximum and final gelatinization temperature as well as different rheological behavior. If both GBSS and starch synthases genes SSII and SSIII are inhibited, the starch gives the gel, which is much more stable in prolonged freezing, or multiple freeze—thaw cycles compared to ordinary starch gel. The SBEI gene encoding the main starch branching enzyme being inhibited does not increase amylose content in modified potato. But simultaneous inhibition of both SBEI and SBEII genes results in high (60-89 %) amylose starch with minor amylopectin content. Elevation of SBEII expression allows obtaining starch characterized by increased amylopectin branching with shorter end chains. On contrary, amylopectin from potato plants with inhibited SBE synthesis has longer polysaccharide chains with lower branching. GWD gene knockout results in amylopectin with reduced phosphate content and, accordingly, reduced viscosity gels from the modified starch. Low phosphate starch demonstrates also a reduced rate of biocatalytic hydrolysis. Overexpression of SSIV results in increased tuber starch content in both greenhouse and field grown plants. Starch granule morphology and crystallinity may be corrected on genetic level as well. Typically, morphological traits including physical and chemical properties of starch are regulated by not one or two genes, but a certain gene network. So, discovery of qualitative trait loci and identification of diagnostic markers for them allows application of marker-assisted selection for developing potato cultivars with predetermined starch properties as an optimal feedstock for certain industries.

Keywords: potato, starch, biosynthesis genes, starch synthase, amylose, amylopectin, branching enzyme, physical and chemical properties.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. Murphy P. Starch. In: Handbook of hydrocolloids. Woodhead Publishing Series in Food Science, Technology and Nutrition. G.O. Phillips, P.A. Williams (eds.). CRC Press, Boca Raton, 2009.
  2. Singh J. Potato starch and its modification. In: Advances in potato chemistry and technology. J. Singh, L. Kaur (eds.). Academic Press, Burlington-San Diego-London-NY, 2016.
  3. Kryazhev V.N., Romanov V.V., Shirokov V.A. Khimiya rastitel'nogo syr'ya, 2010, 1: 5-12 (in Russ.).
  4. Wang T.L., Bogracheva T.Ya., Hedley C.L. Starch: as simple as A, B, C? J. Exp. Bot., 1998, 49(320): 481-502 CrossRef
  5. Schwall G.P., Safford R., Westcott R.J., Jeffcoat R., Tayal A., Shi Y.-Ch., Gidley M.J., Jobling S.A. Production of very-high-amylose potatostarch by inhibition of SBE A and B. Nat. Biotechnol., 2000, 18: 551-554 CrossRef
  6. Issledovatel'skaya kompaniya «ID-Marketing». Rossiiskii produktovyi rynok, 2016, 1. Available http://www.foodmarket.spb.ru/archive.php?year=2016&number=155&article
    =2236. No date (in Russ.).
  7. Jobling S. Improving starch for food and industrial applications. Curr. Opin. Plant Biol., 2004, 7: 210-218 CrossRef
  8. Comparot-Moss S., Denyer K. The evolution of the starch biosynthetic pathway in cereals and other grasses. J. Exp. Bot., 2009, 60(9): 2481-2492 CrossRef
  9. Khlestkina E.K., Shumnyi V.K. Genetika, 2016, 52(7): 774-787 CrossRef
  10. Khlestkina E.K., Shumnyi V.K., Kolchanov N.A. Dostizheniya nauki i tekhniki APK, 2016, 30(10): 5-8.
  11. Kochetov A.V., Shumnyi V.K. Vavilovskii zhurnal genetiki i selektsii, 2016, 20(4): 475-481 CrossRef
  12. Wandelt C. Quality traits: Altered starch composition in potato (BASF Plant Science Company GmbH, Meeting on «Genetic basis of unintended effects in modified plants», 14-15 January 2014, Canada). Ottawa, 2014. Available http://hesiglobal.org/hesi//wp-content/uploads/sites/11/2015/12/Quality-traits-altered-starch-composition-in-potato.pdf. No date.
  13. Ryffel G.U. Making the most of GM potatoes. Nat. Biotechnol., 2010, 28(4): 318 CrossRef
  14. Holme I.B., Wendt T., Holm P.B. Intragenesis and cisgenesis as alternatives to transgenic crop development. Plant Biotechnol. J., 2013, 11(4): 395-407 CrossRef
  15. Andersson M., Turesson H., Nicolia A., Falt A-S., Samuelsson M., Hofvander P. Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. PlantCell Rep., 2017, 36: 117-128 CrossRef
  16. Ortega-Ojeda F.E., Larsson H., Eliasson A.-Ch. Gel formation in mixtures of hydrophobically modified potato and high amylopectin potato starch. Carbohyd. Polym., 2005, 59: 313-327 CrossRef
  17. Ortega-Ojeda F.E., Larsson H., Eliasson A.-Ch. Gel formation in mixtures of amylose and high amylopectin potato starch. Carbohyd. Polym., 2004, 57: 55-66 CrossRef
  18. Sanchez T., Dufour D., Moreno I.X., Ceballos H. Comparison of pasting and gel stabilities of waxy and normal starches from potato, maize, and rice with those of a novel waxy cassava starch under thermal, chemical, and mechanical stress. J. Agric. Food Chem., 2010, 58: 5093-5099 CrossRef
  19. Šimkova D., Lachman J., Hamouz K., Vokal B. Effect of cultivar, location and year on total starch, amylose, phosphorus content and starch grain size of high starch potato cultivars for food and industrial processing. Food Chem., 2013, 141: 3872-3880 CrossRef
  20. Safford R., Jobling S.A., Sidebottom C.M., Westcott R.J., Cooke D., Tober K.J., Strongitharm B.H., Russell A.L., Gidley M.J. Consequences of antisense RNA inhibition of starch branching enzyme activity on properties of potato starch. Carbohyd. Polym., 1998, 35: 155-168 CrossRef
  21. Jobling S.A., Schwall G.P., Westcott R.J., Sidebottom C.M., Debet M., Gidley M.J., Jeffcoat R., Safford R. A minor form of starch branching enzyme in potato (Solanum tuberosum L.) tubers has a major effect on starch structure: cloning and characterization of multiple forms of SBE A. Plant J., 1999, 18(2): 163-171 CrossRef
  22. Andersson M., Melander M., Pojmark P., Larsson H., Bulow L., Hofvander P. Targeted gene suppression by RNA interference: An efficient method for production of high-amylose potato lines. J. Biotechnol., 2006, 123: 137-148 CrossRef
  23. Hofvander P., Andersson M., Larsson C.-T., Larsson H. Field performance and starch characteristics of high amylose potatoes obtained by antisense gene targeting of two branching enzymes. Plant Biotechnol. J.,2004, 2: 311-320 CrossRef
  24. Brummell D.A., Watson L.M., Zhou J., McKenzie M.J., Hallett I.C., Simmons L., Carpenter M., Timmerman-Vaughan G.M. Overexpression of STARCH BRANCHING ENZYME II increases short-chain branching of amylopectin and alters the physicochemical properties of starch from potato tuber. BMC Biotechnol., 2015, 15: 28 CrossRef
  25. Wikman J., Larsen F.H., Motawiac M.S., Blennow A., Bertoft E. Phosphate esters in amylopectin clusters of potato tuber starch. Int. J. Biol. Macromol., 2011, 48: 639-649 CrossRef
  26. Bertoft E., Blennow A. Structure of potato starch. In: Advances in potato chemistry and technology. J. Singh, L. Kaur (eds.). Academic Press, Burlington-San Diego-London-NY, 2016.
  27. Lorberth R., Ritte G., Willmitzer L., Kossmann J. Inhibition of a starch-granule-bound protein leads to modified starch and repression of cold sweetening. Nat. Biotechnol., 1998, 16: 473-477 CrossRef
  28. Ritte G., Lloyd J.R., Eckermann N., Rottmann A., Kossmann J., Steup M. The starch-related R1 protein is an alpha -glucan, water dikinase. PNAS, 2002, 99(10): 7166-7171 CrossRef
  29. Anders Viksø-Nielsen A., Blennow A., Jørgensen K., Kristensen K.H., Jensen A., Møller B.L. Structural, physicochemical, and pasting properties of starches from potato plants with repressed r1-gene. Biomacromolecules, 2001, 2: 836-843.
  30. Ritte G., Scharf A., Eckermann N., Haebel S., Steup M. Phosphorylation of transitory starch is increased during degradation. Plant Physiol., 2004, 135: 2068-2077 CrossRef
  31. Ritte G., Heydenreich M., Mahlowa S., Haebel S., Koetting O., Steup M. Phosphorylation of C6- and C3-positions of glucosyl residues in starch is catalysed by distinct dikinases. FEBS Lett., 2006, 580: 4872-4876 CrossRef
  32. Carpenter M.A., Joyce N., Genet R.A., Cooper R.D., Murray S.R., Noble A.D., Butler R.C., Timmerman-Vaughan G.M. Starch phosphorylation in potato tubers is influenced by allelic variation in the genes encoding glucan water dikinase, starch branching enzymes I and II, and starch synthase III. Front. Plant Sci., 2015, 6: 143 CrossRef
  33. Stark D.M., Timmerman K.P., Barry G.F., Preiss J., Kishore G.M. Regulation of the amount of starch in plant tissues by ADP glucose pyrophosphorylase. Science, 1992, 258: 287-292 CrossRef
  34. Zhang H., Liu J., Hou J., Yao Y., Lin Y., Ou Y., Song B., Xie C. The potato amylase inhibitor gene SbAI regulates cold-induced sweetening in potato tubers by modulating amylase activity. Plant Biotechnol. J., 2014, 12: 984-993 CrossRef
  35. Gamez-Arjona F.M., Li J., Raynaud S., Baroja-Fernadez E., Munoz F.J., Ovecka M., Ragel P., Bahaji B., Pozueta-Romero J., Merida A. Enhancing the expression of starch synthase class IV results in increased levels of both transitory and long-term storage starch. Plant Biotechnol. J., 2011, 9: 1049-1060 CrossRef
  36. Zhang Y., Sun F., Fettke J., Schottler M.A., Ramsden L., Fernie A.R., Lim B.L. Heterologous expression of AtPAP2 in transgenic potato influences carbon metabolism and tuber development. FEBS Lett., 2014, 588: 3726-3731 CrossRef
  37. van Soest J.J.G., Tournois H., de Wit D., Vliegenthart J.F.G. Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-trans-form IR spectroscopy. Carbohyd. Res., 1995, 279: 201-214 CrossRef
  38. Manners D.J. Recent developments in our understanding of amylopectin structure. Carbohyd. Polym., 1989, 11(2): 87-112 CrossRef
  39. Jane J., Wong K.-S., McPherson A.E. Branch-structure difference in starches of A- and B-type X-ray patterns revealed by their Naegeli dextrins. Carbohyd. Res., 1997, 300: 219-227 CrossRef
  40. Kozlov S.S., Blennow A., Krivandin A.V., Yuryev V.P. Structural and thermodynamic properties of starches extracted from GBSS and GWD suppressed potato lines. Int. J. Biol. Macromol., 2007, 40: 449-460 CrossRef
  41. Fan X.Y., Guo M., Li R.D., Yang Y.H., Liu M., Zhu Q., Tang S.Z., Gu M.H., Xu R.G., Yan C.J. Allelic variations in the soluble starch synthase II gene family result in changes of grain quality and starch properties in rice (Oryza sativa L.). J. Agr. Sci., 2017, 155(1): 129-140 CrossRef
  42. Wattebled F., Buleon A., Bouchet B., Ral J.-P., Lienard L., Delvalle D., Binderup K., Dauvillee D., Ball S., D’Hulst C. Granule-bound starch synthase I. A major enzyme involved in the biogenesis of B-crystallites in starch granules. Eur. J. Biochem., 2002, 269: 3810-3820 CrossRef
  43. Yamamori M., Fujita S., Hayakawa K., Matsuki J., Yasui T. Genetic elimination of a starch granule protein, SGP-1, of wheat generates an altered starch with apparent high amylose. Theor. Appl. Genet., 2000, 101: 21-29 CrossRef
  44. Huang X.-F., Nazarian-Firouzabadi F., Vincken J.-P., Ji Q., Suurs L.C.J.M., Visser R.G.F., Trindade L.M. Expression of an engineered granule-bound Escherichia coli glycogen branching enzyme in potato results in severe morphological changes in starch granules. Plant Biotechnol. J., 2013, 11: 470-479 CrossRef
  45. Werij J.S., Furrer H., van Eck H.J., Visser R.G.F., Bachem C.W.B. A limited set of starch related genes explain several interrelated traits in potato. Euphytica, 2012, 186: 501-516 CrossRef
  46. Sliwka J., Soltys-Kalina D., Szajko K., Wasilewicz-Flis I., Strzelczyk-Zyta D., Zimnoch-Guzowska E., Jakuczun H., Marczewski W. Mapping of quantitative trait loci for tuber starch and leaf sucrose contents in diploid potato. Theor. Appl. Genet., 2016, 129: 131-140 CrossRef
  47. Li L., Paulo M.-J., Strahwald J., Lubeck J., Hofferbert H.-R., Tacke E., Junghans H., Wunder J., Draffehn A., van Eeuwijk F., Gebhardt C. Natural DNA variation at candidate loci is associated with potato chip color, tuber starch content, yield and starch yield. Theor. Appl. Genet., 2008, 116: 1167-1181 CrossRef
  48. Li L., Tacke E., Hofferbert H.R., Lübeck J., Strahwald J., Draffehn A.M., Walkemeier B., Gebhardt C. Validation of candidate gene markers for marker-assisted selection of potato cultivars with improved tuber quality. Theor. Appl. Genet., 2013, 126(4): 1039-1052 CrossRef
  49. Schonhals E.M., Ortega F., Barandalla L., Aragones A., Ruiz de Galarreta J.I., Liao J.-C., Sanetomo R., Walkemeier B., Tacke E., Ritter E., Gebhardt C. Identification and reproducibility of diagnostic DNA markers for tuber starch and yield optimization in a novel association mapping population of potato (Solanum tuberosum L.). Theor. Appl. Genet., 2016, 129: 767-785 CrossRef
  50. Sanetomo R., Gebhardt C. Cytoplasmic genome types of European potatoes and their effects on complex agronomic traits. BMC Plant Biol., 2015, 15: 162 CrossRef
  51. Keeling P.L., Myers A.M. Biochemistry and genetic of starch synthesis. Annu. Rev. Food Sci. Technol., 2010, 1: 271-303 CrossRef
  52. Chen X., Salamini F., Gebhardt C. A potato molecular-function map for carbohydrate metabolism and transport. Theor. Appl. Genet., 2001, 102: 284-295 CrossRef

back