doi: 10.15389/agrobiology.2015.1.107eng

UDC 635.64:632.4:631.46:579.262:579.64

ARTIFICIAL ASSOCIATIVE SYMBIOSES BEtWEEN TOMATO
PLANTS AND FUNGISTATIC Rhizobium

D.K. Blagova, Z.R. Vershinina, L.R. Nigmatullina, A.M. Lavina, An.Kh. Baimiev, Al.Kh. Baimiev

Institute of Biochemistry and Genetics, Ufa Scientific Center of Russian Academy of Sciences, 71, prosp. Oktyabrya, Ufa, Republic of Bashkortostan, 450054  Russia,
e-mail blagova_darya@mail.ru
Supported by Special Federal Program and Russian Foundation for Basic Research

Received March 13, 2014


Biomethods in plant protection against pests and diseases considered the most prospective alternative to chemicals which pollute soil and water causing concern about public health. The possibility of creating an artificial association of nodule bacteria with plants to protect them from the adverse effects of pathogenic fungi can be realized using one of the specific mechanism of nodule bacteria attachment to the roots of leguminous plants by plant lectins, able to recognize and specifically bind with different carbohydrates, particularly polysaccharides of rhizobia cell wall. In our study we used the composite plants of tomato (Lycopersicon esculentum) Dubok variety and bacterial strains associated with the roots of wild legumes from the collection of Institute of Biochemistry and Genetics (IBG USC RAS). «Hairy rooted» tomato plants were obtained by treatment with Agrobacterium rhizogenes ATCC 15834, containing vehicle gene construction pCambia 1305.1 with inserted pea lectin gene psl under cauliflower mosaic virus 35S promoter. The antagonistic activity of bacteria towards pathogens was tested by dual culture study. The ability of microorganisms to produce siderophores and cyanide was analyzed. Few isolates were identified by sequencing of the 16S rRNA gene fragments. By screening of the collection of isolates from nodules of wild legume from tribe Viceae the candidate strains were detected, particularly Rhizobium leguminosarum, Pseudomonas sp. and Stenotrophomonas rhizophila, with fungistatic activity against Fusarium solani, F. oxysporum, Fusarium sp. and F. oxysporum f. sp. lycopersici. Prodiction of siderophores was detected in two members of Pseudomonas genus, S. rhizophila and R. leguminosarum. Two Pseudomonas strains, the 14M and 103, and S. rhizophila were shown to producecyanide. It was also found that treatment of roots transgenic by psl gene with R. leguminosarum 116 strain reduced the amount of hyphae of the pathogen F. oxysporum f. sp. lycopersici in the rhizosphere of tomato plant that could potentially contribute to plant defense against pathogenic fungi. Thus, the use of lectins as transgenes in roots allows to obtain artificial association with rhizobia in non-symbiotic plants such as tomato, which in combination with the use of microorganisms possessing fungistatic activity can more effectively protect the plant root system o against pathogens.

Keywords: rhizobia, phytopathogenic fungi, transgenic plants, lectins, associative symbiosis.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. Ehteshamul-Haque S., Ghaffar A. Use of rhizobia in the control of root rot diseases of sunflower, okra, soybean and mungbean. J. Phytopathol., 1993, 138: 157-163 CrossRef
  2. Chandra S., Choure K., Dubey R.C., Maheshwari D.K. Rhizosphere competent Mesorhizobium loti MP6 induces root hair curling, inhibits Sclerotinia sclerotiorum and enhances growth of Indian mustard (Brassica campestris). Braz. J. Microbiol., 2007, 38: 128-130 CrossRef
  3. Arfaoui B., Sifi A., Boudabous I., Hadrami El., Cherif M. Identification of Rhizobium isolates possessing antagonistic activity against Fusarium oxysporum f. sp. ciceris, the causal agent of Fusarium wilt of chickpea. J. Plant Pathol., 2006, 88: 67-75.
  4. Deshwal V.K., Pandey P., Kang S.C., Maheshwari D.K. Rhizobia as a biological control agent against soil borne plant pathogenic fungi. Indian J. Exp. Biol., 2003, 41: 1160-1164.
  5. Antoun H., Beauchamp C.J., Goussard N., Chabot R., Lalande R. Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). Plant Soil, 1998, 204: 57-68 CrossRef
  6. Arfaoui A., Sifi B., El Hassni M., El Hadrami I., Boudabous A., Che-
    rif M. Biochemical analysis of chickpea protection against Fusarium wilt afforded by two Rhizobium isolates. Plant Pathol. J., 2005, 4: 35-42 CrossRef
  7. Essalmani H., Lahlou H. Bioprotection mechanisms of the lentil plant by Rhizobium leguminosarum against Fusarium oxysporum f. sp. lentis. C. R. Biol., 2003, 326: 1163-1173. CrossRef
  8. Handelsman J., Stabb E.V. Biocontrol of soilborne plant pathogens. The Plant Cell, 1996, 8: 1855-1869 CrossRef
  9. Mehboob I., Naveed M., Zahir A.Z., Ashraf M. Potential of Rhizobia for sustainable production of non-legumes. Crop Production for Agricultural Improvement, 2012: 659-704 CrossRef
  10. Santillana N., Arellano C., Zúñiga D. PGPR capacity of Rhizobium on Lycopersicon esculentum Miller. (tomato). Ecología Aplicada, 2005, 4: 47-51.
  11. García-Fraile P., Carro L., Robledo M., Ramírez-Bahena M.-H., Flo-
    res-Félix J.-D., Fernandez M.T., Mateos P.F., Rivas R., Igual J.M., Mar-
    tínez-Molina E., Peix Á., Velázquez E. Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans. PLoS ONE, 2012, 7: e38122 CrossRef
  12. Peumans W.J., Van Damme E.J.M. Lectins as plant defense proteins. Plant Physiol., 1995, 109: 347-353 CrossRef
  13. Hirsch A.M. Role of lectins (and rhizobial exopolysaccharides) in legume nodulation. Curr. Opin. Plant Biol., 1999, 2: 320-326 CrossRef
  14. Van Rhijn P., Fujishige N.A., Lim P.O., Hirsch A.M. Sugar-binding activity of pea lectin is essential for heterologous infection of transgenic alfalfa plants by Rhizobium leguminosarum biovar viciae. Plant Physiol., 2001, 126: 133-144 CrossRef
  15. Van Rhijn P., Goldberg R.B., Hirsch A.M. Lotus corniculatus nodulation specificity is changed by the presence of a soybean lectin gene. Plant Cell, 1998, 10: 1233-1250 CrossRef
  16. Sreevidya V.S., Hernandez-Oane R.J., So R.B., Sullia S.B., Stacey G., Ladha J.K., Reddy P.M. Expression of the legume symbiotic lectin genes psl and gs52 promotes rhizobial colonization of roots in rice. Plant Sci., 2005, 169: 726-736 CrossRef
  17. Collier R., Fuchs B., Walter N., Kevin L.W., Taylor C.G. Ex vitro composite plants: an inexpensive, rapid method for root biology. Plant J., 2005, 43: 449-457 CrossRef
  18. Gatehouse J.A., Bown D., Evans I.M., Gatehouse L.N., Jobes D., Pres-
    ton P., Croy R.R.D. Sequence of the seed lectin from pea (Pisum sativum L.). Nucl. Acids Res., 1987, 15: 7642 CrossRef
  19. Vershinina Z.R., Baimiev A.Kh., Chemeris A.V. Fiziologiya rastenii, 2010, 57(1): 108-116 CrossRef
  20. Jefferson R.A. Assaying chimeric genes in plants: the gus gene fusion system. Plant Mol. Biol. Rep., 1987, 5: 387-405 CrossRef
  21. Whipps J.M. Effect of media on growth and interactions between a range of soil-borne glasshouse pathogens and antagonistic fungi. New Phytologist, 1987, 107: 127-142 CrossRef
  22. Pace N.R., Stahl D.A., Lane D.J., Olsen G.J.The analysis of natural microbial populations by ribosomal RNA sequences. Adv. Microbiol. Ecol., 1986, 9: 1-55 CrossRef
  23. Schwyn B., Neilands J.B. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 1987, 160: 47-56 CrossRef
  24. Bakker A.W., Schippers B. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp-mediated plant growth-stimulation. SoilBiol. Biochem., 1987, 19: 451-457 CrossRef
  25. Permyakov A.I. Mikrotekhnika: Uchebno-metodicheskoe posobie dlya slushatelei FPK i studentov biologicheskogo fakul'teta MGU [Microtechnique: a tutorial for the students and post graduated students of MSU Biological Faculty]. Moscow, 1988.
  26. Baimiev An.Kh., Yamidanov R.S., Matniyazov R.T., Blagova D.K., Baimiev Al.Kh., Chemeris A.V. Molekulyarnaya biologiya, 2011, 45(6): 984-991 CrossRef
  27. Vershinina Z.R., Baymiev An.K., Blagova D.K., Chubukova O.V., Bay-
    miev Al.K., Chemeris A.V. Artificial colonization of non-symbiotic plants roots with the use of lectins. Symbiosis, 2012, 56: 25-33 CrossRef
  28. Vershinina Z.R., Baimiev A.Kh., Blagova D.K., Knyazev A.V., Baimi-
    ev A.Kh., Chemeris A.V. Prikladnaya biokhimiya i mikrobiologiya, 2011, 47(3): 336-342 CrossRef
  29. El-Batanony N.H., Massoud O.N., Mazen M.M., Abd El-Monium M.M. The inhibitory effects of cultural filtrates of some wild Rhizobium spp. On some faba bean root rot pathogens and their antimicrobial synergetic effect when combined with Arbusclar Mycorrhiza(AM). World J. Agric. Sci., 2007, 3: 721-730.
  30. Baimiev An.Kh., Ptitsyn K.G., Muldashev A.A., Baimiev Al.Kh. Ekologicheskaya genetika, 2011, 2: 3-8.
  31. Siddiqui I.A., Ehteshamul-Haque S., Ghaffar A. Effect of Rhizobia and fungal antagonists in the control of root infecting fungi on sun flower and chickpea. Pak. J. Bot., 1998, 30: 279-286.

back