УДК 636.01+502.74):57.086.13

doi: 10.15389/agrobiology.2014.6.3rus

КРИОБАНКИ СОМАТИЧЕСКИХ КЛЕТОК КАК ПЕРСПЕКТИВНЫЙ СПОСОБ СОХРАНЕНИЯ ГЕНЕТИЧЕСКИХ РЕСУРСОВ ЖИВОТНЫХ (обзор)

Г.Н. СИНГИНА, Н.А. ВОЛКОВА, В.А. БАГИРОВ, Н.А. ЗИНОВЬЕВА

Вымирание многих видов необратимо и представляет собой часть естественной эволюции, однако деятельность человека повлияла на этот процесс, сделав его гораздо быстрее видообразования. По данным ФАО, примерно 20 % мировых пород крупного рогатого скота, коз, свиней, лошадей и птицы в настоящее время находятся под угрозой исчезновения, многие вымерли в течение последних нескольких лет, в результате чего их генетические характеристики потеряны навсегда. Роль банков генетических ресурсов в управлении и сохранении исчезающих видов особенно заметна в последнее десятилетие. Большинство криобанков фокусирует внимание на криоконсервации гамет (в первую очередь спермы) и эмбрионов. Их основная цель состоит в получении потомства с использованием вспомогательных репродуктивных технологий, которые включают в себя искусственное оплодотворение, экстракорпоральное оплодотворение и трансплантацию эмбрионов. Открытие феномена репрограммирования ядер соматических клеток позволило расширить спектр форм биоматериала в программах по криоконсервации. Создание криобанков соматических клеток — доноров ядер для клонирования рассматривается как вспомогательный инструмент сохранения и улучшения генофонда сельскохозяйственных животных и птицы. Для создания жизнеспособных криоконсервированных клеточных линий достаточно небольшого количества биопсийного материала, в том числе от умершего животного, но при этом такие линии содержат полный геном и протеом. В отличие от половых клеток и эмбрионов, а также от генеративных тканей криоконсервированные соматические клетки после многократного размораживания способны к регенерации, то есть могут практически бесконечно служить источником биоматериала как для использования во вспомогательных репродуктивных технологиях, так и для биологических исследований, в том числе ретроспективных. Кроме того, из-за небольшого размера соматические клетки более устойчивы к криоконсервации. В настоящем обзоре дано краткое описание основ и истории клонирования. Обсуждаются преимущества использования различных типов клеток в качестве кариопластов. В частности, известно, что для производства клонированных животных можно использовать практически любые типы клеток (эмбриональные клетки, клетки молочной железы, кумулюса, гранулезы, яйцевода, печени, фибробласты, лейкоциты и эмбриональные стволовые клетки), но эффективность клонирования при этом существенно зависит от типа клеток. Наиболее результативно с точки зрения эмбрионального развития и рождения живого потомства клонирование с использованием фетальных фибробластов в качестве доноров ядерного материала. Альтернативным источником ядер при клонировании могут быть стволовые клетки. Полностью репрограммировать ядро стволовой или прогениторной клетки (то есть стволовой, детерминированной на дифференцировку в определенный тип клеток) легче, чем терминально дифференцированной, также показано, что при использовании в качестве кариопласта ядер стволовых клеток значительно увеличивается число получаемых клонированных эмбрионов. Дискутируются успехи в области межвидового клонирования как стратегии восстановления редких и исчезающих видов животных. На многочисленных примерах показано, что соматические клетки могут рассматриваться в качестве наиболее перспективного материала для восстановления генетических ресурсов животных разных видов. Так, с 1997 по 2012 годы с использованием дифференцированных соматических клеток были получены домашние и дикие животные разных видов: овцы, мыши, коровы, козы, свиньи, гуар, муфлон, домашняя кошка, кролики, мул, лошадь, крыса, дикая кошка, собака, бантенг, хорек, волк, буйвол, благородный олень, горный козел, верблюд, койот. Лидером по клонированию пока остается крупный рогатый скот, результативность рождения потомства у которого в среднем составляет 10, а в ряде случаев 25 %. Для большинства других животных этот показатель пока что не превышает 1 %. В стандартизированной окружающей среде, которая может достигаться в хозяйствах с хорошей системой управления, продуктивность клонов должна различаться только в пределах остающейся природной изменчивости и обусловленной технологией клонирования митохондриальной генетической изменчивости.

Ключевые слова: соматические клетки, криобанки, клонирование, биоразнообразие, генетические ресурсы животных.

 

Полный текст

 

CRYOBANKING OF SOMATIC CELLS IN CONSERVATION OF ANIMAL GENETIC RESOURCES: PROSPECTS AND SUCCESSES (review)

G.N. Singina, N.A. Volkova, V.A. Bagirov, N.A. Zinovieva

Extinction of many species is irreversible and is a part of the natural evolution, but human activities have influenced this process, making it much faster comparing to speciation. According to FAO, approximately 20 % of the breeds of cattle, goats, pigs, horses and poultry in the world are currently at risk of disappearance, many have died in the past few years, as a result their genetic characteristics lost forever. The role of banks in the management of genetic resources and the conservation of endangered species is particularly noticeable in the last decade. Most cryobanks focus on the cryopreservation of gametes (primarily sperm) and embryos. Their main goal is to produce offspring using reproductive technologies, which include artificial insemination, in vitro fertilization and embryo transfer. The discovery of the phenomenon of reprogramming somatic cell nuclear allowed expanding the range of forms of biological material in programs for cryopreservation. Creating cryobanks of somatic cells as donors of nuclei for cloning considered an auxiliary instrument for the preservation and improvement of the gene pool of farm animals and poultry. To obtain viable cryopreserved cell lines very small amount of biopsy material, including that of dead animals, is sufficient, but such lines contain the complete genome and proteome. In contrast to germ cells, embryos and generative tissues, the cryopreserved somatic cells after repeated thawing are capable to regenerate, i.e. almost infinitely may serve as a source of biomaterial for use in assisted reproductive technologies and biological research, including retrospective reconstruction. Furthermore, due to the small size the somatic cells are more resistant to cryopreservation. This review also provides a brief description of the principles and history of cloning. The advantages of the use of different cell types as karyoplasts are discussed. In particular, almost all types of cells (e.g. embryonic cells, mammary cells, cumulus, granulosa, oviduct, liver, fibroblasts, white blood cells and embryonic stem cells) can be used for the production of cloned animals, but the cloning efficiency depends significantly on the type of cells. Aiming embryo development and birth of live offspring, the fetal fibroblasts as donors of nuclear material for cloning are most effective. Alternatively, the stem cells may be a source of the nuclei. Stem or progenitor cells (i.e., stem, determined to differentiate in specific type cells) are easier reprogrammed than terminally differentiated cells. Also when stem cells nuclei are used as karyoplasts the number of cloned embryos significantly increased. The advances in interspecific cloning as a strategy for restoration of rare and endangered species are discussed. Numerous examples show that somatic cells can be considered the most promising material for the recovery of animal genetic resources of different types. Particularly from 1997 to 2012 using the differentiated somatic cells the domestic and wild animals of different species such as sheep, mice, cows, goats, pigs, guar, mouflon, domestic cat, rabbits, mule, horse, rat, wildcat, dog, banteng, ferret, wolves, buffalo, deer, mountain goat, camel, coyote were obtained. Cattle are still the leader in the production of cloned offspring with the efficacy 10 % on average, and in some cases up to 25 %, while for most other animals it does not exceed 1 %. Under controlled conditions in farms with good management, the productivity of clones should vary only within the remaining natural variability and mitochondrial genetic variability due to cloning technology.

Keywords: somatic cells cryobanks, cloning, biodiversity, animal genetic resources.

ГНУ Всероссийский НИИ животноводства
Россельхозакадемии,

142132 Россия, Московская обл., Подольский р-н, пос. Дубровицы,
e-mail: g_singina@mail.ru, natavolkova@inbox.ru, vugarbagirov@mail.ru, n_zinovieva@mail.ru

Поступила в редакцию
18 августа 2014 года

 

Оформление электронного оттиска

назад в начало