БИОЛОГИЯ РАСТЕНИЙ
БИОЛОГИЯ ЖИВОТНЫХ
ПЕЧАТНАЯ ВЕРСИЯ
ЭЛЕКТРОННАЯ ВЕРСИЯ
 
КАК ПОДАТЬ РУКОПИСЬ
 
КАРТА САЙТА
НА ГЛАВНУЮ

 

 

 

 

doi: 10.15389/agrobiology.2020.5.970rus

УДК 633.72:581.1:58.085

Исследования выполнены за счет средств гранта РФФИ и Администрации Краснодарского края № 19-416-230049, а также при финансовой поддержке Минобрнауки РФ в рамках тем государственного задания ФИЦ СНЦ РАН № 0683-2019-0003 и Института физиологии растений им. К.А. Тимирязева РАН № АААА-А-19-11904189005-8.

 

ФИЗИОЛОГО-БИОХИМИЧЕСКИЕ ХАРАКТЕРИСТИКИ
МИКРОПОБЕГОВ ЧАЯ (Camellia sinensis L.) В УСЛОВИЯХ in vitro:
НОРМА, ОСМОТИЧЕСКИЙ СТРЕСС, ВЛИЯНИЕ КАЛЬЦИЯ

Л.С. МАЛЮКОВА1 ✉, Т.Л. НЕЧАЕВА2, М.Ю. ЗУБОВА2,
М.В. ГВАСАЛИЯ1, Н.Г. КОНИНСКАЯ1, Н.В. ЗАГОСКИНА2 ✉

К важным факторам, определяющим продуктивность растений, относится их устойчивость к стрессовым воздействиям, в том числе к засухе, гипотермии, минеральной недостаточности и засолению. Решению этих проблем, актуальных в связи со всеобщей аридизацией климата, посвящена серия исследований на различных сельскохозяйственных культурах (J.K. Zhu, 2016; E. Fleta-Soriano, S. Munné-Bosch, 2016), в том числе на чае (Camellia sinensis L.) (T.K. Maritim с соавт., 2015; Л.С. Самарина с соавт., 2019). При достаточно детальном изучении физиолого-биохимических и молекулярных механизмов устойчивости чая к засухе практически не охвачена тема их экзогенной регуляции на основе использования химических и биологических веществ. При этом на многих культурах показана важная роль ионов кальция (Ca2+) в распознавании клеткой внешнего стрессорного воздействия и запуске системы трансдукции ответного сигнала (M.C. Kim, 2009; Е.Г Рихванов с соавт., 2014). При исследовании этих аспектов достаточно часто в качестве «моделей засухи» используют агаризованные питательные среды с добавлением в них осмотически активных веществ (R.M. Pérez-Clemente с соавт., 2012; M.K. Rai с соавт., 2011) и модельные биосистемы (микропобеги и ткани in vitro), позволяющие раскрыть клеточные механизмы адаптации. Однако в отношении растений чая число подобных исследований невелико (Л.С. Самарина с соавт., 2018; М.В. Гвасалия с соавт., 2019), и они направлены на расшифровку биохимических и молекулярных ответов растений на стрессы. В настоящем сообщении мы впервые на основе отечественных методик получения микропобегов чая в культуре in vitro (М.В. Гвасалия, 2013) и протоколов моделирования осмотического стресса исследовали роль кальция в адаптации растений к стрессовым условиям, вызванным длительным культивированием и осмотическим стрессом, а также продемонстрировали перспективу изучения роли экзогенных индукторов в повышении устойчивости растений на такого рода «моделях засухи». Целью работы было выявление особенностей функционального состояния культивируемых in vitro микропобегов чая, выращиваемых в оптимальных условиях и при моделировании слабого осмотического стресса, обусловленного действием маннита, на фоне разных концентраций кальция (Ca2+) в питательной среде. Оценивали морфофизиологическое состояние листьев, их оводненность, проницаемость мембран растительных клеток, содержание малонового диальдегида, пролина и фотосинтетических пигментов. Установлено, что при повышении концентрации Ca2+ в питательной среде (с 440 до 880 мг/л) при длительном культивировании микропобегов чая in vitro (4 мес) происходит замедление формирования и развития их листьев, а также достоверное снижение содержания малонового диальдегида и проницаемости мембран растительных клеток (в среднем на 50 %, р ≤ 0,05), свидетельствующее о менее выраженном развитии процессов липопероксидации. Добавление в питательную среду маннита (40 г/л) снижало оводненность побегов (в среднем на 2 %, р ≤ 0,05), формируя тем самым незначительный осмотический стресс, что приводило к накоплению пролина (увеличение на 30-40 %, р ≤ 0,05), а также к структурно-функциональной перестройке фотосинтетического аппарата (уменьшение количества фотосинтетических пигментов в среднем на 35-40 %). При этом отмечали достоверное снижение содержания малонового альдегида (на 50-70 %, р ≤ 0,05) и интенсивности выхода электролитов из тканей листьев (в среднем на 50 %, р ≤ 0,05), что указывало на менее выраженный окислительный стресс в сравнении с контролем (без добавления маннита). Повышение концентрации Ca2+ в питательной среде (с 440 до 880 мг/л) (на фоне добавления маннита) не оказывало достоверного влияния на оводненность тканей и структуру фотосинтетического аппарата (содержание и соотношение хлорофиллов/каротиноидов). Незначительное воздействие кальция (на фоне маннита) проявилось в достоверном уменьшении содержания малонового диальдегида на 20 мкмоль/г сухой массы. Следовательно, добавление в питательную среду повышенной концентрации кальция (660-880 мг/л) обеспечивает улучшение функционального состояния длительно культивируемых микропобегов чая in vitro (4 мес) за счет снижения активности липопероксидации в мембранах и повышения их стабильности. Выявленные закономерности доказывают положительную роль ионов кальция в снижении комбинированного окислительного стресса, вызванного длительным культивированием растений in vitro в сочетании с осмотическим стрессом. 

Ключевые слова: чай, Camellia sinensis L., микропобеги in vitro, кальций, маннит, осмотический стресс, пигменты, пролин, малоновый диальдегид.

 

 

PHYSIOLOGICAL AND BIOCHEMICAL CHARACTERIZATION OF TEA (Camellia sinensis L.) MICROSHOOTS in vitro: THE NORM, OSMOTIC STRESS, AND EFFECTS OF CALCIUM

L.S. Malyukova1 , T.L. Nechaeva2, M.Yu. Zubova2,
M.V. Gvasalia1, N.G. Koninskaya1, N.V. Zagoskina2

Stress tolerance is an important trait, that determines the productivity of plants under drought, hypothermia, mineral deficiency, and salinity. Numerous studies of various agricultural crops (J.K. Zhu, 2016; E. Fleta-Soriano, S. Munné-Bosch, 2016), including tea crop (Camellia sinensis L.), were aimed at solving this problem due to the global aridization of the climate. (T.K. Maritim et al., 2015; L.S. Samarina et al., 2019). Along with the sufficiently detailed physiological, biochemical and molecular studies of tea drought tolerance, the exogenous regulation of tolerance by using of chemical and biological substances is still not investigated. In addition, the important role of calcium ions (Ca2+) in the cell recognition of an external stressor by the triggering signal transduction has been shown in many crops (M.C. Kim, 2009; E.G. Rikhvanov et al., 2014). In these studies, tissue culture media supplemented with the osmotically active substances (R.M. Pérez-Clemente et al., 2012; M.K. Rai et al., 2011) and artificial biosystems (microshoots and tissues in vitro), are often used as “drought models” to reveal cellular adaptation mechanisms. However, just a few studies were conducted aimed at deciphering the biochemical and molecular responses of tea plant to stress using tissue culture tool (L.S. Samarina et al., 2018; M.V. Gvasaliya et al., 2019). In this article, for the first time, we investigated the role of calcium in plant adaptation to long-term osmotic stress based on earlier published protocols of tea tissue culture (M.V. Gvasaliya, 2013) and osmotic stress induction protocols.  We also demonstrated the prospect of studying the role of exogenous inducers in increasing plant tolerance using “drought models”. This work aimed to identify the effect of different concentrations of calcium (Ca2+) in the culture medium on the functional state of tea microshoots grown under mannitol-induced osmotic stress in vitro comparing with control. The changes in morphophysiological state of the leaves, leaves water content, cells membrane permeability, malondialdehyde, proline, and photosynthetic pigments were analyzed. It was found that increased Ca2+content in the nutrient medium (from 440 to 880 mg/l) resulted the slower leaves development and significant decrease of malondialdehyde and cell membranes permeability of tea microshoots (by 50 %, р ≤ 0.05) during the long-term cultivation of tea microshoots in vitro (4 months), indicating inhibition of lipid peroxidation processes. The addition of mannitol (40 g/l) to the culture medium reduced the water content of the shoots (on average by 2 %, р ≤ 0.05), thereby forming light osmotic stress, which led to the accumulation of proline (an increase of 30-40 %, р ≤ 0.05), as well as to the structural and functional rearrangement of the photosynthetic apparatus (a decrease in the amount of photosynthetic pigments by an average of 35-40 %). In addition, a significant decrease of malondialdehyde (by 50-70 %, p ≤ 0.05) and the intensity of electrolyte leakage from leaf tissues (on average by 50 %, p £ 0.05) were observed, indicating a less pronounced oxidative stress in comparison with control (without mannitol). An increase in the Ca2+ concentration in the nutrient medium (from 440 to 880 mg/l) (in the presence of mannitol) did not significantly affect the water content in the leaves and the photosynthetic apparatus (content and ratio of chlorophylls/carotenoids). An insignificant effect of calcium (in the presence of mannitol) manifested itself in a significant decrease in malondialdehyde by 20 μmol/g dry weight. Consequently, the increased concentration of calcium (660-880 mg/l) in the nutrient medium provides an improvement in the functional state of long-term cultivated tea microshoots in vitro (4 months) by reducing the activity of lipid peroxidation in membranes and increasing their stability. The revealed patterns confirm the positive role of calcium ions in the reduction of combined oxidative stress caused by long-term cultivation of plants in vitro in combination with osmotic stress.

Keywords: tea plants, Camellia sinensis L., in vitro microshoots, calcium, mannitol, osmotic stress, pigments, proline, malondialdehyde.

 

1ФГБУН ФИЦ Субтропический научный центр РАН,
354002 Россия, г. Сочи, ул. Яна Фабрициуса, 2/28,
e-mail: MalukovaLS@mail.ru ✉, m.v.gvasaliya@mail.ru,
natakoninskaya@mail.ru;
2ФГБУН Институт физиологии растений
им. К.А. Тимирязева РАН,
127276 Россия, г. Москва, ул. Ботаническая, 35,
e-mail: nechaevatatyana.07@yandex.ru, mariaz1809@gmail.com, nzagoskina@mail.ru

Поступила в редакцию
10 июня 2020 года

 

назад в начало

 


СОДЕРЖАНИЕ

 

 

Полный текст PDF

Полный текст HTML