UDC 636.294:575.174:575.113:577.2.08:51-76

doi: 10.15389/agrobiology.2015.6.756eng

The equipment of Bioresources and Bioengineering Center of L.K. Ernst All-Russian Research Institute of Animal Husbandry was used.
Supported by the Russian Science Foundation, project № 14-36-00039


V.R. Kharzinova1, E.A. Gladyr’1, V.I. Fedorov1, 2, T.M. Romanenko3,
L.D. Shimit4, K.A. Layshev5, L.A. Kalashnikova6, N.A. Zinovieva1

1L.K. Ernst All-Russian Research Institute of Animal Husbandry, Federal Agency of Scientific Organizations,
pos. Dubrovitsy, Podolsk Region, Moscow Province, 142132 Russia,
e-mail veronika0784@mail.ru;
2Yakutsk Research Institute of Agriculture, Federal Agency of Scientific Organizations, 23/1, ul. Bestuzheva-Marlynskogo, Yakutsk, Sakha Republic, 677001 Russia,
e-mail vfedorov_09@mail.ru;
3Naryan-Mar Agricultural Experimental Station, Federal Agency of Scientific Organizations,
1a, ul. Rybnikov, Naryan-Mar, Nenets AO, 166004, Russia,
e-mail nmshos@atnet.ru;
4Tuva State University,
36, ul. Lenina, Kyzyl, Tyva Republic, 667000 Russia,
e-mail Shimit62@list.ru;
5North-West Center of Interdisciplinary Researches of Food Maintenance Problems, Federal Agency of Scientific Organizations,
7, sh. Podbel’skogo, St. Petersburg, 196608 Russia,
e-mail layshev@mail.ru;
6All-Russian Research Institute of Animal Breeding,
pos. Lеsnуе Роlyаnу, Рushkin Region, Моsсоw Province, 141212 Russia,
e-mail: lakalashnikova@mail.ru

Received September 18, 2015

Reindeer (Rangifer tarandus), the only member of the genus Rangifer, is one of the most interesting object to investigate genetic diversity. One of the technique of studying the genetic structure of populations and parentage identification is to create panels of STR (short tandem repeats) markers. The aim of the current study was the development of multiplex panel of STR markers and assessment of its application to assign the parents and to study biodiversity of Russian reindeer populations. As a biological material for research we used tissue samples (part of ear’s lobes) of reindeer of Even (EVN, n = 44), Evenk (EVK, n = 44), Nenets (n = 45) breeds and Tyva population (TUV, n = 35). DNA extraction was performed using Nexttec columns (Germany) according to the manufacturer’s instructions. Polymorphism of nine STR markers (NVHRT76, RT9, NVHRT24, RT30, RT1, RT6, RT27, NVHRT21 and RT7) was determined by own procedures using ABI 3130xl DNA analyzer («Applied Biosystems», USA). Statistical analysis was performed in MS Excel 2007 with the plugin GenAIEx v. 6.5, software MSA 4.05, Phylip, v. 3.5c, Treev32 and Structure, v. 2.3.4. The studied populations of reindeer were characterized by relatively high levels of genetic diversity. The average number of alleles per locus was 6.11±0.56 in TUV, 6.67±0.50 in NEN, 8.00±0.76 in EVN and 8.89±0.65 in EVK. The smallest effective number of alleles per locus was detected in TUV (3.37±0.47), the maximal value was in EVK (4.89±0.46 alleles per locus), and EVN and NEN occupied an intermediate position (4.42±0.53 and 3.90±0.38, respectively). The number of alleles in single loci ranged from four in NVHRT21 and NVHRT24 for TUV to twelve in RT7 for EVK and RT1 for EVN. The probability of matching genotypes (PI) for the nine loci ranged from 1.84×10-9 in NEN to 5.9×10-11 in EVK, showing the high power of the proposed marker panel for parentage identification. The calculation of the mean values of similarity coefficient Q in the ith cluster with the most probable number of clusters such as k = 3 and k = 4 (Qi/k) revealed high heterogeneity of genetic structure of studied populations. The highest degree of genetic differentiation was shown for TUV (Q2/3 = 0.899±0.034, Q3/4 = 0.883±0.035) and for NEN (Q3/3 = 0.885±0.031, Q4/4 = 0.813±0.038). The EVN and EVK population were close to each other, and a clear clustering between them was not observed. An estimation of Rst (AMOVA) showed that 11.4 % of the total molecular variability was caused by differences between populations, and 88.6 % was due to individual differences between animals (p < 0.01). Evaluation of degree of genetic differentiation of studied populations, using as criteria the values of Nei’ genetic distances and pairwise comparisons of Fst showed similar trends. TUV population was the most distinct comparing to other populations (DNei = 0,283-0,502, Fst = 0,299-0,452), while it was the most differ from NEN and the closest to EVN. The minimal genetic differences were observed between EVN and EVK (DNei = 0,068, Fst = 0,032). The results show high functional power of the developed STR panel to identify the parentage and to study biodiversity in Russian reindeer populations.

Keywords: reindeer breeds, microsatellites, biodiversity, Rangifer tarandus.


Full article (Rus)

Full text (Eng)



  1. Stolpovskii Yu.A. Vavilovskii zhurnal genetiki i selektsii, 2013, 17(4/2): 900-902.
  2. Davydov A.B. Morfologicheskaya i geneticheskaya differentsiatsiya populyatsii severnogo olenya Evrazii. Avtoreferat kandidatskoi dissertatsii [Morphological and genetic differentiation in the Eurasia reindeer population. PhD Thesis]. Moscow, 1997.
  3. Flerov K.K. Fauna SSSR. Mlekopitayushchie. Kabargi i oleni [Fauna o the USSR. Mammals. Musk-deer and reindeer]. Moscow, 1952.
  4. Geptner V.G., Nasimovich A.A., Bannikov A.G. Mlekopitayushchie Sovetskogo Soyuza [Mammals of the USSR]. Moscow, 1961.
  5. Danilkin A.A. Olen'i (Cervidae) [Deers (Cervidae)]. Moscow, 1999.
  6. Banfield A.W.F. A revision of the reindeer and caribou genus, Rangifer. Bulletin ¹ 177. National Museum of Canada, Ottawa, 1961.
  7. Kupriyanov A.G. Materialy 2-go Mezhdunarodnogo simpoziuma «Dinamika populyatsii okhotnich'ikh zhivotnykh Severnoi Evropy» [Proc. II Int. Symp. «Population dynamics of game animals in North Europe»]. Petrozavodsk, 1998: 25-26.
  8. Danilov P.I. Okhotnich'i zhivotnye Karelii: ekologiya, resursy, upravlenie, okhrana [Game animals in Karelia: ecology, resources, control, protection]. Moscow, 2005.
  9. Danilov P.I., Panchenko D.V. Sovremennye problemy prirodopol'zovaniya, okhotovedeniya i zverovodstva, 2012, 1: 88-92.
  10. Yuzhakov A.A., Mukhachev A.D. Agrarnaya nauka, 2002, 10: 7-8.
  11. Ernst L.K., Dmitriev N.G., Paronyan I.A. Geneticheskie resursy
    el'skokhozyaistvennykh zhivotnykh v Rossii i sopredel'nykh stranakh [Genetic resources of farm animals in Russia and neighbouring countries]. St. Petersburg, 1994.
  12. Pomishin S.B. Problemy porody i ee sovershenstvovanie v olenevodstve [Breed and its improvement under reindeer herding]. Yakutsk, 1981.
  13. Storset A., Olaisen B., Wika M., Bjarghov R. Genetic markers in the Spitzbergen reindeer. Hereditas, 1978, 88: 113-115.
  14. Baccus R., Ryman N., Smith M.H., Reuterwall C., Cameron D. Genetic variability and differentiation of large grazing mammals. J. Mammalogy, 1983, 64: 109-120 CrossRef
  15. Roed K.H. Genetic differences at the transferrin locus in Norwegian semidomestic and wild reindeer (Rangifer tarandus L.). Hereditas, 1985, 102: 199-206.
  16. Cronin M.A., Renecker L., Pierson B.J., Patton J.C. Genetic variation in domestic reindeer and wild caribou in Alaska. Anim. Genet., 1995, 26: 427-434.
  17. Romanenko T.M., Kalashnikova L.A., Filippova G.I., Laishev K.A. Dostizheniya nauki i tekhniki APK, 2014, 4: 68-71.
  18. Røed K.H., Midthjell L. Microsatellites in reindeer, Rangifer tarandus, and their use in other cervids. Mol. Ecol., 1998, 7: 1773-1776 CrossRef
  19. Zinovieva N.A., Kharzinova V.R., Logvinova T.I., Gladyr' E.A., Sizareva E.I., Chinarov Yu.I. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2011, 6: 47-53.
  20. Weber J.L., May P.E. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet., 1989, 44(3): 388-396.
  21. Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nuc. Acids Res., 1989, 17: 6463-6471.
  22. DeWoody J., Avise J.C. Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J. Fish Biology, 2000, 56: 461-473 CrossRef
  23. Primmer C.R., Ellegren H., Saino N., Møller A.P. Directional evolution in germline microsatellite mutations. Nat. Genet., 1996, 13: 391-393.
  24. Ball M.C., Finnegan L., Manseau M., Wilson P. Integrating multiple analytical approaches to spatially delineate and characterize genetic population structure: an application to boreal caribou (Rangifer tarandus caribou) in central Canada. Conserv. Genet., 2010, 11: 2131-2143 CrossRef
  25. McDevitt A.D., Mariani S., Hebblewhite M., DeCesare N.J., Morgantini L., Seip D., Weckworth B.V., Musiani M. Survival in the Rockies of an endangered hybrid swarm from diverged caribou (Rangifer tarandus) lineages. Mol. Ecol., 2009, 18: 665-679 CrossRef
  26. Zittlau K.A., Coffin J., Farnell R.S., Kuzyk G.W., Strobeck C. Genetic relationships of three Yukon caribou herds determined by DNA typing. Rangifer, 2000, 12: 59-62 CrossRef
  27. Kol N.V.,Lazebnyi O.E. Genetika, 2006, 42(12): 1731-1734.
  28. Cronin M.A. Intraspecific variation in mitochondrial DNA of North American cervids. J. Mammalogy, 1992, 73(1): 70-82 CrossRef
  29. Cronin M.A., MacNeil M.D., Patton J.C. Variation in mitochondrial DNA and microsatellite DNA in caribou (Rangifer tarandus) in North America. J. Mammalogy, 2005, 86: 495-505 CrossRef
  30. Engel S.R., Linn R.A., Taylor J.F., Davis S.K. Conservation of microsatellite loci across species of artiodactyls: implications for population studies. J. Mammalogy, 1996, 77: 504-518 CrossRef
  31. Zittlau K.A. Population genetic analyses of North American caribou (Rangifer tarandus). PhD Thesis. University of Alberta, Canada, 2004.
  32. Tyler S.K., McFarlane K.A., Pamela Groves P., Mooers A.Ø., Shapiro B. Modern and ancient DNA reveal recent partial replacement of caribou in the southwest Yukon. Mol. Ecol., 2010, 19: 1312-1323 CrossRef
  33. Wilson G.A., Strobeck C., Wu L., Coffin J.W. Characterization of microsatellite loci in caribou Rangifer tarandus, and their use in other artiodactyls. Mol. Ecol., 1997, 65: 697-699 CrossRef
  34. Hartl D.L., Clark A.G. Principles of population genetics. Massachusetts, 1997.
  35. Waits L.P., Luikart G., Taberlet P. Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol. Ecol., 2001, 10: 249-256 CrossRef
  36. Jamieson A. The effectiveness of using co-dominant polymorphic allelic series for (1) checking pedigrees and (2) distinguishing full-sib pair members. Anim. Genet., 1994, 25(1): 37-44 CrossRef
  37. Jamieson A., Taylor S.C.S. Comparisons of three probability formulae for parentage exclusion. Anim. Genet., 1997, 28: 397-400 CrossRef
  38. Pritchard J.K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945-959.
  39. Slatkin M.A. A measure of population subdivision based on microsatellite allele frequencies. Genetics, 1995, 139: 457-462.
  40. Weir B.S., Cockerham C.C. Estimating F-statistics for the analysis of population structure. Evolution, 1984, 38: 1358-1370.
  41. Nei M. F-statistics and analysis of gene diversity in subdivided populations. Ann. Hum. Genet., 1977, 41: 225-233.
  42. Peakall R., Smouse P.E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 2012, 28: 2537-2539 CrossRef
  43. Felsenstein J. Phylip (Phylogeny Inference Package) version 3.5c. Seattle, 1993.
  44. Côté S.D., Dallas J.F., Marshall F., Irvine R.J., Langvatn R., Albon S.D. Microsatellite DNA evidence for genetic drift and philopatry in Svalbard reindeer. Mol. Ecol., 2002, 11: 1923-1930 CrossRef
  45. Courtois R., Bernatchez L., Ouellet J.-P., Breton L. Significance of caribou (Rangifer tarandus) ecotypes from a molecular genetics viewpoint. Conservation Genetics, 2003, 4: 393-404.