UDC 619:616.98:578:577.2.08:57.083.224

doi: 10.15389/agrobiology.2015.6.794eng


I.R. Imatdinov, V.I. Balysheva, V.N. Ponomarev, O.V. Kapustina

All-Russian Institute of Veterinary Virology and Microbiology, Federal Agency of Scientific Organizations,
Pokrov, Petushinskii Region, Vladimir Province, 601120 Russia,
e-mail VNIIVViM@niiv.petush.elcom.ru, ilnazicf@ya.ru, balyvi@uandex.ru

Received July 27, 2015

In recent decades, a threat of spreading Rift Valley fever (RVF) to Asia and Europe raises serious concerns. Within many years, vaccines against RVF were developed in several ways including designing attenuated vaccine versions, inactivated or genetically engineered vaccines. A serious hazard of the RVF agent requires developing sufficiently immunogenic preparations providing both RVF specific prevention and safety precautions in production procedures. Therefore, this work was aimed at molecular and biological characterization of an attenuated RVF virus (RVFV) strain 1974-VNIIVViM including search for high-tech cell culture systems for the virus growth and determination of its antigenic and/or immunogenic relationship with a virulent strain Entebbe. The results of the investigations showed that the virus accumulated in continuous cell cultures like saiga kidney (SK), Siberian mountain goat kidney (PSGK-60) and MDVK (calve kidney cell culture) at high titers with infectious (8.53±0.21 lg MICLD50/cm3) and antigenic (1:64 to 1:128 in the passive hemagglutination test, PHT) activity levels. We determined optimal regime of the virus growth in BHK-21/13 (Syrian hamster kidney cell culture) using a roller culture method: the culture bottle rotation speed of 12 to 15 r.p.h.; the infection dosage of 0.01 to 0.001 MLD50/cell; the first 12 hours of the culture at pH = 6.4 to 6.8. Further, pH is maintained at 7.2 to 7.6 for 48 to 72 hours of culture at 37 °С, which provides the raw virus production at high infectivity (8.5 to 8.9±0.2 lg MICLD50/cm3) and antigenicity (1:128 to 1:256 in PHT and 1:625 to 1:3125 in solid phase ELISA) levels. Phylogenetic analysis of the nucleotide sequences of 3 sites in S and/or M segments showed that it was closely related to strains Smithburn and Entebbe allowing their grouping into a separate cluster. Comparative analysis of nucleotide sequences of genes encoding glycoproteins Gn and Gc, and the nucleoprotein N, shows that most of the substitutions in the sequences of the genes of the RVFV strain 1974-VNIIVViM are synonymous and do not alter the primary amino acid sequence, with insertion and deletion missing. In the nucleotide sequence encoding glycoprotein Gn of strain 1974-VNIIVViM we found 8 substitutions relative to a similar sequence of M segment of a virulent strain Entebbe, and 14 substitutions when compared with M segment of strain Smithburn. A lower (as compared with other attenuated strains) amount of significant amino acid substitutions in RVFV antigenic components was revealed; thus, strain 1974-VNIIVViM selection as a source of immunodominant proteins and/or raw virus for vaccine production seems to be well-grounded.

Keywords: Rift Valley fever, viral culture, antigenicity, immunogenicity, electron microscopy, phylogenetic analysis.


Full article (Rus)

Full text (Eng)



  1. Bird B.H., Githinji J.W.K., Macharia J.M., Kasiiti J.L., Muriithi R.M., Gacheru S.G., Musaa J.O., Towner J.S., Reeder S.A., Oliver J.B., Stevens T.M., Erickson B.R., Morgan L.T., Khristova M.L, Hartman A.L., Comer J.A., Rollin P.E., Ksiazek T.G., Nichol S.T. Multiple virus lineages sharing recent common ancestry were associated with a large Rift Valley fever outbreak among livestock in Kenya during 2006-2007. J. Virol., 2008, 82(22): 11152-11166 CrossRef
  2. Knize A.V., Dmitrenko N.V., Strizhakov A.A. Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii «Veterinarnye i meditsinskie aspekty zooantropozoonozov» [Proc. Int. Conf. «Zoo anthropozoonoses: aspects of the veterinary and human medicine». Part 1]. Pokrov, 2003, chast' 1: 93-98.
  3. The deadly dozen: 12 diseases global warming incubates. From Lyme disease to Ebola virus, the world Is getting sicker. 2008 [Elektronnyi resurs]. (http://preview.www.thedailygreen.com/environmental-news/latest/deadly-dozen-global-warming-47100803).
  4. Chevalier V., Pépin M., Plée L., Lancelot R. Rift Valley fever — a threat for Europe? Euro Surveil., 2010, 15(10): pii=19506 (IT-resource) (http://www.eurosurveil-lance.org/ViewArticle.aspx?ArticleId=19506) (PMID: 20403309).
  5. Cito F., Narcisi V., Danzetta M.L., Iannetti S., Sabatino D.D., Bruno R., Carvelli A., Atzeni M., Sauro F., Calistri P. Analysis of surveillance systems in place in European Mediterranean countries for West Nile virus (WNV) and Rift Valley fever (RVF). Transboundary and Emerging Diseases, 2013, 60(2): 40-44 CrossRef
  6. Shope R.E., Peters C.J., Davies F.G. The spread of Rift Valley fever and approaches to its control. Bulletin of the World Health Organization, 1982, 60(3): 299-304.
  7. Bird B.H., Ksiazek T.G., Nichol S.T., Maclachlan N.J. Rift Valley fever virus. J. Am. Vet. Med. Assoc., 2009, 234(7): 883-893 CrossRef
  8. Rossi C.A., Turell M.J. Characterization of attenuated strains of Rift Valley fever virus. J. Gen. Virol., 1988, 69: 817-823 CrossRef
  9. Murakami S., Terasaki K., Ramirez S.I., Morrill J.C., Makino S. Development of a novel, single-cycle replicable Rift Valley fever vaccine. PLoS Negl. Trop. Dis., 2014, 8(3): e2746 CrossRef
  10. Grandadam M. Rift Valley fever virus. In: Manual of security sensitive microbes and toxins. CRC Press, Boca Raton, Florida, SSHA, 2014: 201-209 (ISBN: 9781466553965).
  11. Pittman P.R. In: Safety/immunogenicity/genetic drift of MP-12 Rift Valley fever vaccine (RVF MP12). U.S. Army Medical Research and Materiel Command Report (CTI: NCT00415051) (https://clinicaltrials.gov/show/NCT00415051).
  12. Abd el-Rahim I.H., Abd el-Hakim U., Hussein M. An epizootic of Rift Valley fever in Egypt in 1997. Rev. Sci. Tech., 1999, 18(3): 741-748 (PMID: 10588018).
  13. Scharin I. Seroprevalence of Rift Valley fever in sheep and goats in Zambezia, Mozambique and preparations for a metagenomic study of arboviruses in ticks. In: Sveriges lantbruksuniversitet. Swedish University of Agricultural Sciences, Uppsala, 2014: 181-189 [Elektronnyi resurs] (http://stud.epsilonslu.se).
  14. Frank-Peterside N. Response of laboratory staff to vaccination with an inactivated Rift Valley fever vaccine — TSI-GSD 200. African Journal of Medicine and Medical Sciences, 2000, 29(2): 89-92 (PMID: 11379456).
  15. Manuel A.F.V., Goncalves M.A., de Vries A.F. Adenovirus: from foe to friend. Rev. Med. Virol., 2006, 16: 167-186 CrossRef
  16. Holman D.H., Penn-Nicholson A., Wang D., Woraratanadharm J., Harr M.-K., Luo M., Maher E.M., Holbrook M.R., Dong J.Y. A complex adenovirus-vectored vaccine against Rift Valley fever virus protects mice against lethal infection in the presence of preexisting vector immunity. Clin.Vaccine Immunol., 2009, 16(11): 1624-1632 CrossRef
  17. Xiao Y., Zeng Y., Alexander E., Mehta S., Joshi S.B., Buchman G.W., Volkin D.B., Middaugh R.C., Isaacs S.N. Adsorption of recombinant poxvirus L1-protein to aluminum hydroxide/CpG vaccine adjuvants enhances immune responses and protection of mice from vaccinia virus challenge. Vaccine, 2013, 31(2): 319-326 CrossRef
  18. Soi R.K., Rurangirwa F.R., McGuire T.C., Rwambo P.M., DeMartini J.C., Crawford T.B. Protection of sheep against Rift Valley fever virus and sheep Poxvirus with a recombinant Capripoxvirus vaccine. Clin. Vaccine Immunol., 2010, 17(12): 1842-1849 CrossRef
  19. Lorenzo G., Martin-Folgar R., Rodriguez F., Brun A.. Priming with DNA plasmids encoding the nucleocapsid protein and glycoprotein precursors from Rift Valley fever virus accelerates the immune responses induced by an attenuated vaccine in sheep. Vaccine, 2008, 26: 5255-5262 CrossRef
  20. Bouloy M., Flick R. Reverse genetics technology for Rift Valley fever virus: current and future applications for the development of therapeutics and vaccines. Antiviral Res., 2009, 84: 101-118 CrossRef
  21. Spik K., Shurtleff A., McElroy A.K., Guttieri M.C., Hooper J.W., Schmaljohn C. Immunogenicity of combination DNA vaccines for Rift Valley fever virus, tick-borne encephalitis virus, Hantaan virus, and Crimean Congo hemorrhagic fever virus. Vaccine, 2006, 24: 4657-4666 CrossRef
  22. Lagerqvist N., Naslund J., Lundkvist A., Bouloy M., Ahlm C., Bucht G. Characterisation of immune responses and protective efficacy in mice after immunisation with Rift Valley fever virus cDNA constructs. Virol. J., 2009, 6(1): 6 CrossRef
  23. Pyat'desyat let bor'by s osobo opasnymi boleznyami zhivotnykh /Pod redaktsiei D.V. Kolbasova [50 years control of most dangerous animal diseases. D.V. Kolbasov (ed.).]. Vladimir, 2008: 54-55.
  24. Belov A.B., Grebennikova T.V., Zaberezhnyi A.D., Butenko A.M., Ali-
    per T.P. Veterinariya, 2007, 6: 53-55.
  25. Sal'nikov N.G., Malogolovkin A.S., Kapustina O.V., TSybanov S.Zh., Kolbasov D.V. Materialy Mezhdunarodnoi konferentsii «Molekulyarnaya diagnostika» [Proc. Int. Conf. «Molecular diagnostics». V. 2]. Moscow, 2010, tom 2: 166-168.
  26. Reed L.D., Muench H.A. Simple method of estimating fifty percent endpoints. Am. J. Hygiene, 1938, 27: 493-497.
  27. Imatdinov I.R., Kazakova A.S., Prilepskaya E.P., Balysheva V.I. Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii «Aktual'nye voprosy kontrolya infektsionnykh boleznei zhivotnykh» [Proc. Int. Conf. «Actual aspects of the infectious diseases control in animals»]. Pokrov, 2013: 154-160.
  28. Tamura K., Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol., 1993, 10: 512-526.
  29. Vrenner S., Horne R.W. A negative staining method for high resolution electron microscopy of viruses. BBA, 1959, 34: 103-110.
  30. Lakin G.F. Biometriya [Biolmetry]. Moscow, 1980.
  31. Keegan K., Collett M.S. Use of bacterial expression cloning to define the amino acid sequences of antigenic determinants on the G2 glycoprotein of Rift Valley fever virus. J. Virol., 1986, 58(2): 263-270.