UDC 636.52/.58:636.084.415:579.64

doi: 10.15389/agrobiology.2015.6.817eng

Supported by Russian Science Foundation, the project «Modern understanding of gut microflora in poultry depending on feed composition: molecular and genetic approach» № 14-16-00140


L.A. Il’ina1, E.A. Yildirim1, I.N. Nikonov1, V.A. Filippova1, G.Yu. Laptev1, N.I. Novikova1, A.A. Grozina2, T.N. Lenkova2, V.A. Manukyan2, V.I. Fisinin2, I.A. Egorov2

1Biotrof+ Ltd, 7-N,8, lit. A,
Malinovskaya ul., St. Petersburg, 196602 Russia,
е-mail ilina@biotrof.ru;
2All-Russian Research and Technological Poultry Institute, Federal Agency of Scientific Organizations,
10, ul. Ptitsegradskaya, Sergiev Posad-11, Moscow Province, 141300 Russia,
e-mail fisinin@vnitip.ru

Received July 24, 2015

Currently the processed sunflower products as the cheapest source of vegetable protein are considered an alternative to soybean cake and meal in the poultry diet. However, in sunflower meal the energy value is lower, lysine rate is less than required, and the level of non-starch polysaccharides not digestible in poultry gut because of absence of specific enzymes (i.e., amylases, cellulases, etc.) are rather high. Digestion of these components is possible due to microbial enzymes. Gut content is detained in the poultry caecum for the longest time, wherein the basic processes of microbial proteolysis, and cellulose and starch destruction are performed. Using modern molecular methods of NGS-sequence analysis and real-time PCR, we investigated the number of bacteria and the structure of bacterial community in cecum of 36-day-old Cobb 500 broiler chickens fed with diets containing soybean meal or sunflower meal. Contrary to traditional view, the composition of caecum microbiom was very abundant and divers, and included the obligate gut microflora (Clostridiaceae, Eubacteriaceae, Lactobacillaceae, Bacteroidetes) and non-identified taxons. Moreover, the typical gut microorganisms (i.e., enterococcus, bifidobacterium) were minor and the pathogenic bacteria of genera Camphylobacter sp., Staphylocoссus sp. were not detected. Our results first characterized in detail the caecum microbiome as influenced by the combined factors such as specific composition and decreased metabolizable energy in feed. This study showed that the feed containing 25 % sunflower meal caused a 14.7-fold increase in total number of bacteria while the number of phylum Bacteroides amylolytics was 1.4-times lower, the family Clostridiaceae was 1.2-times less abundant and the cellulosolytics families Ruminococcaceae and Lachnospiraceae were1.16-times and 1.48-times depressed, respectively, thus indicating limitations in the metabolism of hydrolysable components and cellulose in the poultry gut. Moreover, the obligate bacterial intestinal flora changed in number. Particularly, there were a 3.04-fold increase in genera Lactobacillus sp., a 1.5-fold increase in order Bacillales, 3-fold decrease in genera Bifidobacterium sp. and 10-fold decrease in genera Enterococcus sp. Also the bacterial number in genera Escherichia sp. was found to be 55-fold lower, and families Sutterellaceae and Erysipelotrichaceae, including species that might cause disbiotic diseases, were depressed 2.5 times and 1.8 times, respectively. Moreover, our research showed that the changes in the cecum bacterial community due to the sunflower meal containing feed depressed the chickens’ performance. Thus, the weight of 36-day-old chickens (males and females) was the highest in the control group not fed with sunflower meal (2142.0±45.40 g) compared to the experimental poultry (2017.0±53.30 g) in which the feed consumption increased by 13 %.

Keywords: microflora of cecum, chicken, performance in broilers, bacterial community, NGS-sequencing, real-time PCR.


Full article (Rus)

Full text (Eng)



  1. Fisinin V.I., Egorov I.A., Okolelova T.M., Imangulov Sh.A. Kormlenie sel'skokhozyaistvennoi ptitsy [Feeding in poultry]. Sergiev Posad, 2001.
  2. Normy i ratsiony kormleniya sel'skokhozyaistvennykh zhivotnykh. Spravochnoe posobie /Pod redaktsiei A.P. Kalashnikova, V.I. Fisinina, V.V. Shcheglova, N.I. Kleimenova [Feed norms and rations for arm animals: handbook. A.P. Kalashnikov, V.I. Fisinin, V.V. Shcheglov, N.I. Kleimenov (eds.)]. Moscow, 2003.
  3. Timoshko M.A. Mikroflora pishchevaritel'nogo trakta sel'skokhozyaistvennykh zhivotnykh [Microflora of gastrointestinal tract in farm animals]. Kishinev, 1990.
  4. Tarakanov B.V. Metody issledovaniya mikroflory pishchevaritel'nogo trakta sel'skokhozyaistvennykh zhivotnykh i ptitsy [Study of gastrointestinal microflora in farm animals and poultry]. Moscow, 2006.
  5. Salanitro J., Fairchilds I., Zgornicki Y. Isolation, culture characteristics, and identification of anaerobic bacteria from the chicken cecum. Appl. Microbiol., 1974, 27: 678-687.
  6. Stanley D., Hughes R.J., Moore R.J. Microbiota of the chicken gastrointestinal tract: influence on health, productivity and disease. Appl. Microbiol. Biotechnol., 2014, 98: 4301-4309 CrossRef
  7. Zdunczyk Z., Jankowski J., Kaczmarek S. Determinants and effects of postileal fermentation in broilers and turkeys part 1: gut microbiota composition and its modulation by feed additives. World’s Poult. Sci. J., 2015, 71(1): 37-57 CrossRef
  8. Stanley D., Denman S.E., Hughes R.J., Geier M.S., Crowley T.M., Chen H. Intestinal microbiota associated with differential feed conversion efficiency in chickens. Appl.  Microbiol. Biotechnol., 2012, 96: 1361-1369 CrossRef
  9. Torok V.A., Hughes R.J., Mikkelsen L.L. Identification and characterization of potential performance-related gut microbiota in broiler chickens across various feeding trials. Appl. Environ. Microbiol., 2011, 77(17): 5868-5878 CrossRef
  10. Barnes E. The intestinal microflora of poultry and game birds during life and after storage. J. App. Bacteriol., 1979, 46: 407-419 CrossRef
  11. Mead G.C. Microbes of the avian cecum: types present and substrates utilized. J. Exp. Zool., 1989, 3: 48-54 CrossRef
  12. Engberg R., Hedemann M., Lesser T., Jensen B. Effect of zinc bacitracin and salinomicin on intestinal microflora and performance of broilers. Poultry Sci., 2000, 79: 1311-1319 CrossRef
  13. Apajalahti J., Kettunen A., Graham H. Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. World Poult. Sci. J., 2004, 60: 223-232 CrossRef
  14. Gong J., Forster R.J., Yu H., Chambers J.R., Sabour P.M., Wheatcroft R., Chen S. Diversity and phylogenetic analysis of bacteria in the mucosa of chicken ceca and comparison with bacteria in the cecal lumen. FEMS Microbiol. Lett., 2002, 208: 1-7 CrossRef
  15. Amit-Romach E., Sklan D., Uni Z. Microflora ecology of the chicken intestine using 16S ribosomal DNA primers. Poult. Sci., 2004, 83: 1093-1098 CrossRef
  16. Diaz-Sanchez S., Hanning I., Pendleton S., D’Souza D. Next-generation sequencing: the future of molecular genetics in poultry production and food safety. Poult. Sci., 2013, 92: 562-572 CrossRef
  17. Arumugam M., Raes J., Pelletier E., Le Paslier D., Yamada T., Men-
    de D.R. Enterotypes of the human gut microbiome. Nature, 2011, 473: 174-180 CrossRef
  18. Yatsunenko T., Rey F.E., Manary M.J., Trehan I., Dominguez-Bello M.G., Contreras M. Human gut microbiome viewed across age and geography. Nature, 2012, 486: 222-227 CrossRef
  19. Qu A., Brulc J., Wilson M., Law B., Theoret J., Joens L. Comparative metagenomics reveals host specific metavirulomes and horizontal gene transfer elements in the chicken cecum microbiome. PLoS ONE, 2008, 3: e2945 CrossRef
  20. Mohd Shaufi M.A., Sieo C.C., Chong C.W., Gan H.M., Ho Y.W. Deciphering chicken gut microbial dynamics based on high-throughput 16S rRNA metagenomics analyses. Gut Pathogens, 2015, 7: 4-16 CrossRef
  21. Danzeisen J.L., Kim H.B., Isaacson R.E., Tu Z.J., Johnson T.J. Modulations of the chicken cecal microbiome and metagenome in response to anticoccidial and growth promoter treatment. PLoS ONE, 2011, 6: e27949 CrossRef
  22. Singh K., Shah T., Deshpande S., Jakhesara S., Koringa P., Rank D. High through put 16S rRNA gene-based pyrosequencing analysis of the fecal microbiota of high FCR and low FCR broiler growers. Mol. Biol. Rep., 2012, 39: 10595-10602 CrossRef
  23. Stanley D., Denman S.E., Hughes R.J., Geier M.S., Crowley T.M., Chen H. Intestinal microbiota associated with differential feed conversion efficiency in chickens. Appl. Microbiol. Biotechnol., 2012, 96: 1361-1369 CrossRef
  24. Metodika provedeniya nauchnykh i proizvodstvennykh issledovanii po kormleniyu sel'skokhozyaistvennoi ptitsy. Molekulyarno-geneticheskie metody opredeleniya mikroflory kishechnika /Pod redaktsiei V.I. Fisinina [Scientific and practical study of feeding in poultry. Molecular genetic assay of gut microflora. V.I. Fisinin (ed.)]. Sergiev Posad, 2013.
  25. Instruktsiya po sanitarno-mikrobiologicheskomu kontrolyu tushek, myasa ptitsy, ptitseproduktov, yaits i yaitseproduktov na ptitsevodcheskikh i pererabatyvayushchikh predpriyatiyakh [Instruction for sanitary and microbiological control of carcasses, meat, products, eggs and egg products at poultry farms and processing enterprises]. Moscow, 1990.
  26. Stanley D., Hughes R.J., Moore R.J. Microbiota of the chicken gastrointestinal tract: influence on health, productivity and disease. Appl. Microbiol. Biotechnol., 2014, 98: 4301-4310 CrossRef
  27. Rehman H., Vahjen W., Awad W., Zentek J. Indigenous bacteria and bacterial metabolic products in the gastrointestinal tract of broiler chickens. Arch. Anim. Nutr., 2007, 61: 319-335 CrossRef 
  28. Torok V., Allison G., Percy N., Ophel-Keller K., Hughes R. Influence of antimicrobial feed additives on broiler commensal posthatch gut microbiota development and performance. Appl. Environ. Microbiol., 2011, 77: 3380-3390 CrossRef 
  29. Redig P. The avian ceca: obligate combustion chambers or facultative afterburners? — The conditioning influence of diet. J. Exp. Zool., 1989, 3: 66-69 CrossRef