PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2024.5.869eng

UDC: 631.95:631.544.4

 

ARTIFICIAL LIGHT CULTURE OF PLANTS IN MODERN ARTIFICIAL CLIMATE FACILITIES (review)

N.G. Sinyavina , G.G. Panova, T.E. Kuleshova, Yu.V. Chesnokov

Agrophysical Research Institute, 14, Grazhdanskii prosp., St. Petersburg, 195220 Russia, e-mail sinad@inbox.ru (✉ corresponding author), gaiane@inbox.ru, www.piter.ru@bk.ru, yuv_chesnokov@agrophys.ru

ORCID:
Sinyavina N.G. orcid.org/0000-0003-0378-7331
Kuleshova T.E. orcid.org/0000-0003-3802-2494
Panova G.G. orcid.org/0000-0002-1132-9915
Chesnokov Yu.V. orcid.org/0000-0002-1134-0292

Final revision received May 15, 2024
Accepted July 26, 2024

Intense light culture of plants as a process of plant growing under artificial light emerged in the 19th century (F.H. Besthorn, 2013; J. Kleszcz et al., 2020). In Russia, scientific research in the field of plants light culture began to actively develop in the first half of the 20th century (V.M. Lehman, 1976; A.M. Globus, 2007; E.I. Ermakov, 2009; I.G. Tarakanov et al., 2022). Currently, the study of various aspects of growing plants under controlled environmental conditions is carried out in a number of leading scientific institutions of the Russian Federation and the Republic of Belarus, as well as by research teams from Europe, Asia, the USA, Canada and Australia. Significant interest in this area of plant cultivation is confirmed by the sharply increased number of publications on this topic in recent years (A. Dsouza et al., 2023). Light culture is implemented in modern artificial climate facilities (controlled environment agriculture, CEA), that are usually equipped with multi-level systems for growing plants and lighting sources, and serving as an alternative to traditional agricultural production (T. Kozai et al., 2020). Such facilities (plant factories, vertical farms, city farms, phytotech complexes) are used to produce vegetables in densely populated urban areas and regions with extreme weather conditions, that is, in locations where they have a number of advantages over traditional agriculture (N. Didenko et al., 2021; D.L. Friedrich, 2021; G.G. Panova et al., 2023). The main advantages of artificial climate facilities include the possibility of year-round production regardless of the season and weather conditions; high quality, and closeness to the consumer. Many researchers also note a higher yield of marketable products per 1 m2 due to the use of multi-level growing systems, as well as resource savings due to the applying of modern hydroponic and aeroponic growing technologies and closed cycles (C.E. Wong et al., 2020; N. Engler et al., 2021; K. Al-Kodmany, 2024). The choice of plants for production in the CEA is determined primarily by profitability; therefore, currently there are mainly fast-growing crops with a compact habit (leafy vegetables, spicy and aromatic plants, microgreens). At the same time, there is a need to expand the range of products and breed new varieties intended for controlled growing conditions (K.M. Folta, 2019; M. SharathKumar, 2020; C.E. Wong et al., 2020; A. Dsouza et al., 2023). The main object of research in CEA is now the light environment, since most important processes in plants depend on it: photosynthesis, growth and morphogenesis, biochemical composition, accumulation of valuable metabolites, and, ultimately, optimization of cultivation technologies, resource use efficiency and production profitability (A. Dsouza et al., 2023). This article considers the role of the spectral composition of light, intensity and uniformity of irradiation, photoperiod in the plant growth and metabolism, after that, it assesses the influence of each of such components on the yield and quality of plant products. It is shown that by varying the spectral composition of light, it is possible to control the plant architectonics, and regulate the accumulation of primary and secondary metabolites (G.C. Modarelli et al., 2022; K. Zhang et al., 2023; K. Rosniza et al., 2023). The genetically determined differences in the requirements of a number of crops for the composition of the light environment are reflected, including a discussion of the possibility of the existence of varietal specificity in the reaction of accessions within a crop to the formed growing conditions. The technologies and crops applied in CEA are also discussed; the latest results in the field of breeding program for the light conditions are briefly reflected, and prospects for further research are indicated.

Keywords: light culture, agricultural production under controlled conditions (CEA), light environment, LEDs, plants, crop, quality, breeding.

 

REFERENCES

  1. Van Gerrewey T., Boon N., Geelen D. Vertical farming: the only way is up? Agronomy, 2021, 12(1): 2 CrossRef
  2. Vatistas C., Avgoustaki D.D., Bartzanas T. A systematic literature review on controlled-environment agriculture: how vertical farms and greenhouses can influence the sustainability and footprint of urban microclimate with local food production. Atmosphere, 2022, 13(8): 1258 CrossRef
  3. Dsouza A., Newman L., Graham T., Fraser E.D.G. Exploring the landscape of controlled environment agriculture research: a systematic scoping review of trends and topics. Agricultural Systems, 2023, 209: 103673 CrossRef
  4. Indoor farming market size, share & trends analysis report by facility type (greenhouses, vertical farms), by component (hardware, software), by crop category, by region, and segment forecasts, 2022-2030. Available: https://www.marketresearch.com/Grand-View-Research-v4060/Indoor-Farming-Size-Share-Trends-31516510. No date.
  5. Panova G.G., Teplyakov A.V., Novak A.B., Levinskikh M.A., Udalova O.R., Mirskaya G.V., Khomyakov Y.V., Shved D.M., Ilyin E.A., Kuleshova T.E., Kanash E.V., Chesnokov Yu.V. Growth and development of leaf vegetable crops under conditions of the phytotechnical complex in Antarctica. Agronomy, 2023, 13(12): 3038 CrossRef
  6. Zacharaki A.K., Monaghan J.M., Bromley J.R., Vickers L.H. Opportunities and challenges for strawberry cultivation in urban food production systems. Plants, People, Planet, 2024, 6(3): 611-621 CrossRef
  7. Talbot M.H., Monfet D. Development of a crop growth model for the energy analysis of controlled agriculture environment spaces. Biosystems Engineering, 2024, 238: 38-50 CrossRef
  8. SharathKumar M., Heuvelink E., Marcelis L.F. Vertical farming: moving from genetic to environmental modification. Trends in Plant Science, 2020, 25(8): 724-727 CrossRef
  9. Wong C.E., Teo Z.W.N., Shen L., Yu H. Seeing the lights for leafy greens in indoor vertical farming. Trends in Food Science & Technology, 2020, 106: 48-63 CrossRef
  10. Al-Kodmany K. Vertical farms for future cities. In: Digital agriculture. P.M. Priyadarshan, S.M. Jain, S. Penna, J.M. Al-Khayri (eds.). Springer, Cham, 2024: 179-197 CrossRef
  11. Engler N., Krarti M. Review of energy efficiency in controlled environment agriculture. Renewable and Sustainable Energy Reviews, 2021, 141: 110786 CrossRef
  12. Rajendran R., Jagmohan S., Jayaraj P., Ali O., Ramsubhag A., Jayaraman J. Effects of Ascophyllum nodosum extract on sweet pepper plants as an organic biostimulant in grow box home garden conditions. Journal of Applied Phycology, 2022, 34: 647-657 CrossRef
  13. Lee T.S., Jung D.-H., Kim J.Y., Lee J.Y., Park J.-E., Kim H.S., Park S.H. Development of a low-cost plant growth chamber for improved phenotyping research. Journal of Biosystems Engineering, 2023, 48(3): 355-363 CrossRef
  14. Kozai T., Niu G. Chapter 2 - Role of the plant factory with artificial lighting (PFAL) in urban areas. In: Plant factory (second edition). T. Kozai, G. Niu, M. Takagaki (eds.). Academic Press, Burlington, 2020: 7-34 CrossRef
  15. Leman V.M. Kurs svetokul’tury rasteniy [Course of photoculture of plants]. Moscow, 1976 (in Russ.).
  16. Bol’shaya Sovetskaya Entsiklopediya, 3-e izd., tom 23 [The Great Soviet Encyclopedia, 3rd ed., vol. 23]. Available: http://bse.uaio.ru/BSE/2301.htm?ysclid=luieli99ai249503070. No date (in Russ.).
  17. GOST R 58461-2019. Osveshchenie rasteniy v sooruzheniyakh zashchishchennogo grunta. Terminy i opredeleniya [GOST R 58461-2019. Illumination of plants in protected ground structures. Terms and definitions]. Moscow, 2019 (in Russ.).
  18. Besthorn F.H. Vertical farming: social work and sustainable urban agriculture in an age of global food crises. Aust. Soc. Work, 2013, 66(2): 187-203 CrossRef
  19. Gericke W.F. Hydroponics — crop production in liquid culture media. Science, 1937, 85(2198): 177-178 CrossRef
  20. Kleszcz J., Kmiecik P., Świerzawski J. Vegetable and gardening tower of Othmar Ruthner in the Voivodeship park of culture and recreation in Chorzów — the first example of vertical farming in Poland. Sustainability, 2020, 12(13): 5378 CrossRef
  21. Zaręba A., Krzemińska A., Kozik R. Urban vertical farming as an example of nature-based solutions supporting a healthy society living in the urban environment. Resources, 2021, 10(11): 109 CrossRef
  22. Despommier D. The vertical farm: feeding the world in the 21st century. New York, 2010.
  23. Shon D., Lee E., Lee Y., Lee J., Byun N. Characteristics of smart farms for architectural planning and design. Buildings, 2022, 13(1): 93 CrossRef
  24. Ermakov E.I. Izbrannye trudy [Selected works]. St. Petersburg, 2009 (in Russ.).
  25. Globus A.M. Agrofizicheskiy institut: 75 let na puti k tochnomu zemledeliyu [Agrophysical Institute: 75 years on the way to precision farming]. St. Petersburg, 2007 (in Russ.).
  26. Chernousov I.N. V sbornike: Reguliruemaya sistema v rastenievodstve i ekofiziologii [In: Regulated system in plant growing and ecophysiology]. St. Petersburg, 2007: 43-53 (in Russ.).
  27. Ermakov E.I., Mukhomorov V.K. Doklady RASKhN, 2002, 3: 14-17 (in Russ.).
  28. Kleshnin A.F. Rastenie i svet: teoriya i praktika svetokul’tury rasteniy [Plant and light: theory and practice of plant light culture]. Moscow, 1954 (in Russ.).
  29. Protasova N.N. Fiziologiya rasteniy, 1987, 34(4): 812-822 (in Russ.).
  30. Prikupets L.B., Boos G.V., Terekhov V.G., Tarakanov I.G. Svetotekhnika, 2018, 5: 6-12 (in Russ.).
  31. Tikhomirov A.A., Sharupich V.P., Lisovskiy T.M. Svetokul’tura rasteniy: biofizicheskie i biotekhnologicheskie osnovy [Plant photoculture: biophysical and biotechnological principles]. Novosibirsk, 2000 (in Russ.).
  32. Lyakh P.A., Koloshina K.A., Popova K.I., Lyakh A.A. Innovatsii i prodovol’stvennaya bezopasnost’, 2022, 1(35): 108-120 CrossRef (in Russ.).
  33. Avercheva O.V., Berkovich Yu.A., Erokhin A.N., Zhigalova T.V., Pogosyan S.I., Smolyanina S.O. Fiziologiya rasteniy, 2009, 56(1): 17-26 (in Russ.).
  34. Konovalova I.O., Berkovich Yu.A., Erokhin A.N., Smolyanina S.O., Yakovleva O.S., Znamenskiy A.I., Tarakanov I.G., Radchenko S.G., Lapach S.N., Trofimov Yu.V., Tsvirko V.I. Aviakosmicheskaya i ekologicheskaya meditsina, 2016, 50(3): 17-22 (in Russ.).
  35. Berkovich Yu.A., Buryak A.A., Ochkov O.A., Smolyanina S.O., Perevedentsev O.V., Lapach S.N. Svetotekhnika, 2019, S: 37-42 (in Russ.).
  36. Kreslavski V., Khudyakova A., Kosobryukhov A., Pashkovskiy P., Vereshchagin M., Balakhnina T., Alharby H.F., Allakhverdiev S.I. Impact of additional green light and deficit in cryptochrome 1 on photosynthetic activity and pro-/antioxidant balance in Arabidopsis thaliana. Photosynthetica, 2023, 61(SI): 215-224 CrossRef
  37. Martirosyan L.Yu., Martirosyan Yu.Ts., Kosobryukhov A.A., Goldberg V.M., Gachok I.V. , Martirosyan V.V., Gladchenko M.A., Gaydamaka S.N., Amerik A.Yu., Minih A.A., Varfolomeyev S.D. Biosynthesis of rubber and inulin depending on the spectral composition of light and activity of the photosynthetic apparatus during aeroponic cultivation of Taraxacum kok-saghys E.Rodin. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2023, 58(1): 100-113 CrossRef
  38. Kos’yanov D.Yu., Vornovskikh A.A., Shichalin O.O., Zav’yalov A.P. Materialy Mezhdunarodnoy nauchno-tekhnicheskoy molodezhnoy konferentsii «Perspektivnye materialy konstruktsionnogo i funktsional’nogo naznacheniya» [Proc. Int. Conf. «Promising materials for structural and functional purposes»]. Tomsk, 2022: 194-196 (in Russ.).
  39. Prikupets L.B. Svetotekhnika, 2019, S: 8-12 (in Russ.).
  40. Mishanov A.P., Rakut’ko E.N., Rakut’ko S.A. Izvestiya Sankt-Peterburgskogo gosudarstvennogo agrarnogo universiteta, 2022, 1(66): 125-134 CrossRef (in Russ.).
  41. Molchan O.V., Obukhovskaya L.V., Kudelina T.N., Astasenko N.I., Barkun M.I., Trofimov Yu.V. Izvestiya Natsional’noy akademii nauk Belarusi. Seriya biologicheskikh nauk, 2023, 68(4): 282-292 CrossRef (in Russ.).
  42. Podol’skaya T.V., Vasyuta E.A., Plaksina A.Yu. Ekonomika: vchera, segodnya, zavtra, 2023, 13(5-1): 294-304 (in Russ.).
  43. Chernousov I.N., Panova G.G., Udalova O.R., Aleksandrov A.V. Fitotekhkompleks dlya vyrashchivaniya rasteniy. Patent na poleznuyu model’. MPK A 01 G 9/14. FGBNU «Agrofizicheskiy nauchno-issledovatel’skiy institut (FGBNU AFI) (RF), Obshchestvo s ogranichennoy otvetstvennost’yu «Fitosfera» (RF). № 189309 U1. Zayavl. 10.09.2018. Opubl. 21.05.2019. Byul. № 15 [Phytotechcomplex for growing plants. Patent for utility model. IPC A 01 G 9/14. Federal State Budgetary Scientific Institution Agrophysical Research Institute (FGBNU AFI) (Russian Federation), Limited Liability Company "Fitosfera" (Russian Federation). № 189309 U1. Appl. 09/10/2018. Publ. 05/21/2019. Bull. № 15] (in Russ.).
  44. Panova G.G., Udalova O.R., Kanash E.V., Galushko A.S., Kochetov A.A., Priyatkin N.S., Arkhipov M.V., Chernousov I.N. Zhurnal tekhnicheskoy fiziki, 2020, 90(10): 1633-1639 CrossRef (in Russ.).
  45. Vermeulen S.J., Dinesh D., Howden S.M., Cramer L., Thornton P.K. Transformation in practice: a review of empirical cases of transformational adaptation in agriculture under climate change. Frontiers in Sustainable Food Systems, 2018, 2: 65 CrossRef
  46. Hansen J., Hellin J., Rosenstock T., Fisher E., Cairns J., Stirling C., Lamanna A., van Etten J., Rose A., Campbell B. Climate risk management and rural poverty reduction. Agricultural Systems, 2019, 172: 28-46 CrossRef
  47. Ksenofontov M.Yu., Polzikov D.A. Problemy prognozirovaniya, 2020, 3: 82-92 (in Russ.).
  48. McCartney L., Lefsrud M. Protected agriculture in extreme environments: a review of controlled environment agriculture in tropical, arid, polar, and urban locations. Applied Engineering in Agriculture, 2018, 34(2): 455-473 CrossRef
  49. Friedrich D.L. Vegetable farming, climate change, and food security in the Arctic. In: Justice and food security in a changing climate. H. Schübel, I. Wallimann-Helmer (eds.). Wageningen Academic Publishers, The Netherlands, 2021: 51-57 CrossRef
  50. Didenko N., Skripnuk D., Ilin I., Cherenkov V., Tanichev A., Kulik S.V. An economic model of sustainable development in the Russian arctic: the idea of building vertical farms. Agronomy, 2021, 11(9): 1863 CrossRef
  51. Martin M., Weidner T., Gullström C. Estimating the potential of building integration and regional synergies to improve the environmental performance of urban vertical farming. Frontiers in Sustainable Food Systems, 2022, 6: 849304 CrossRef
  52. Parkes M.G., Cubillos Tovar J.P., Dourado F., Domingos T., Teixeira R.F. Life cycle assessment of a prospective technology for building-integrated production of broccoli microgreens. Atmosphere, 2022, 13(8): 1317 CrossRef
  53. Fiziko-agronomicheskiy slovar’ /Pod redaktsiey A.G. Bondareva, N.F. Bondarenko, E.I. Ermakova, E.N. Romanovoy, V.A. Semenova., I.B. Uskova, V.P. Yakusheva [Physico-agronomic dictionary. A.G. Bondarev, N.F. Bondarenko, E.I. Ermakov, E.N. Romanova, V.A. Semenov., I.B. Uskov, V.P. Yakushev (eds.)]. St. Petersburg, 2000 (in Russ.).
  54. Ermakov E.I., Kazimirchuk A.A., Sizov G.M., Zheltov Yu.I., Chernousov I.N. Ustroystvo dlya osveshcheniya rasteniy. Patent na izobretenie MPK A 01 G 9/26, F 21 K 7/00, F 21 V 13/08. Aktsionernoe obshchestvo "Trans RES" (RF). № 2057423 C1. Zayavl. 23.09.1993. Opubl. 10.04.1996 [Plant lighting device. Patent for invention IPC A 01 G 9/26, F 21 K 7/00, F 21 V 13/08. Joint-Stock Company "Trans RES" (RF). № 2057423 C1. Appl. 09/23/1993. Publ. 04/10/1996] (in Russ.).
  55. Trivellini A., Toscano S., Romano D., Ferrante A. LED lighting to produce high-quality ornamental plants. Plants, 2023, 12(8): 1667 CrossRef
  56. Cavallaro V., Muleo R. The effects of LED light spectra and intensities on plant growth. Plants, 2022, 11(15): 1911 CrossRef
  57. Borbély P., Gasperl A., Pálmai T., Ahres M., Asghar M.A., Galiba G., Müller M., Kocsy G. Light intensity- and spectrum-dependent redox regulation of plant metabolism. Antioxidants, 2022, 11(7): 1311 CrossRef
  58. Kim H.H., Goins G.D., Wheeler R.M., Sager J.C. Green-light supplementation for enhanced lettuce growth under red-and blue-light-emitting diodes. HortScience, 2004, 39(7): 1617-1622 CrossRef
  59. Kami C., Lorrain S., Hornitschek P., Fankhauser C. Light-regulated plant growth and development. Current Topics in Developmental Biology, 2010, 91: 29-66 CrossRef
  60. Kochetova G.V., Avercheva O.V., Bassarskaya E.M., Zhigalova T.V. Light quality as a driver of photosynthetic apparatus development. Biophys. Rev., 2022, 14: 779-803 CrossRef
  61. Kabacheuskaya E.M., Sukhoveeva S.V., Trofimov Y.V., Barkun M.I. Effect of the spectral composition of LED artificial lighting sources on the functional activity of the photosynthetic apparatus of basil leaves. J. Appl. Spectrosc., 2024, 90: 1267-1272 CrossRef
  62. Modarelli G.C., Paradiso R., Arena C., De Pascale S., Van Labeke M.C. High light intensity from blue-red leds enhance photosynthetic performance, plant growth, and optical properties of red lettuce in controlled environment. Horticulturae, 2022, 8(2): 114 CrossRef
  63. Assmann S.M., Shimazaki K.I. The multisensory guard cell. Stomatal responses to blue light and abscisic acid. Plant Physiology, 1999, 119(3): 809-816 CrossRef
  64. Kim E.-Y., Park S-A., Park B.-J., Lee Y., Oh M.-M. Growth and antioxidant phenolic compounds in cherry tomato seedlings grown under monochromatic light-emitting diodes. Hortic. Environ. Biotechnol., 2014, 55: 506-513 CrossRef
  65. Zhang T., Shi Y., Piao F., Z. Sun Z. Effects of different LED sources on the growth and nitrogen metabolism of lettuce. Plant Cell Tiss. Organ. Cult., 2018, 134: 231-240 CrossRef
  66. Qian Y., Hibbert L.E., Milner S., Katz E., Kliebenstein D.J., Taylor G. Improved yield and health benefits of watercress grown in an indoor vertical farm. Scientia Horticulturae, 2022, 300: 111068 CrossRef
  67. Zhang R., Yang W., Pan Q., Zeng Q., Yan C., Bai X., Liu Y., Zhang L., Li B. Effects of long-term blue light irradiation on carotenoid biosynthesis and antioxidant activities in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Food Research International, 2023, 174(2): 113661 (doi 10.1016/j.foodres.2023.113661">CrossRef
  68. Ke X., Yoshida H., Hikosaka S., Goto E. Optimization of photosynthetic photon flux density and light quality for increasing radiation-use efficiency in dwarf tomato under LED light at the vegetative growth stage. Plants, 2021, 11(1): 121 CrossRef
  69. Gao Q., Liao Q., Li Q., Yang Q., Wang F., Li J. Effects of LED red and blue light component on growth and photosynthetic characteristics of coriander in plant factory. Horticulturae, 2022, 8(12): 1165 CrossRef
  70. Kokalj D., Hribar J., Cigić B., Zlatić E., Demšar L., Sinkovič L., Šircelj H., Bizjak G., Vidrih R. Influence of yellow light-emitting diodes at 590 nm on storage of apple, tomato and bell pepper fruit. Food Technology and Biotechnology, 2016, 54(2): 228 CrossRef
  71. Liu J., van Iersel M.W. Photosynthetic physiology of blue, green, and red light: light intensity effects and underlying mechanisms. Front. Plant Sci., 2021, 12: 619987 CrossRef
  72. Sheikhi H., Delshad M., Aliniaeifard S., Haghbeen K., Bababalar M., Nasiri R. Enhancing growth and nutritional quality in greenhouse-grown ‘little gem’lettuce using LED supplemental lighting. International Journal of Horticultural Science and Technology, 2024, 11(3): 353-368 CrossRef
  73. Trojak M., Skowron E., Sobala T., Kocurek M., Pałyga J. Effects of partial replacement of red by green light in the growth spectrum on photomorphogenesis and photosynthesis in tomato plants. Photosynth. Res., 2022, 151: 295-312 CrossRef
  74. Avendaño-Abarca V.H., Alvarado-Camarillo D., Valdez-Aguilar L.A., Sánchez-Ortíz E.A., González-Fuentes J.A., Cartmill A.D. Response of strawberry to the substitution of blue light by green light in an indoor vertical farming system. Agronomy, 2023, 13(1): 99 CrossRef
  75. Ma Y., Hu L., Wu Y., Tang Z., Xiao X., Lyu J., Xie J., Yu J. Green light partial replacement of red and blue light improved drought tolerance by regulating water use efficiency in cucumber seedlings. Front. Plant Sci., 2022, 13: 878932 CrossRef
  76. Rosniza K., Ajit S., Winnie Y.S.P., Joshua Y.L.V., Farahzety A.M., Zulhazmi S., Mohd Abid A. Effect of different LED wavelengths on growth, chlorophyll and anthocyanin content of purple-red pakchoi (Brassica rapa chineensis) in indoor vertical farming. Food Research, 2023, 6(4): 65-70 CrossRef
  77. Claypool N.B., Lieth J.H. Green light improves photosystem stoichiometry in cucumber seedlings (Cucumis sativus) compared to monochromatic red light. Plants, 2021, 10(5): 824 CrossRef
  78. Goins G.D., Yorio N.C., Sanwo M.M., Brown C.S. Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting. Journal of Experimental Botany, 1997, 48(7): 1407-1413 CrossRef
  79. Li H., Tang C., Xu Z., Liu X., Han X. Effects of different light sources on the growth of non-heading Chinese cabbage (Brassica campestris L.). Journal of Agricultural Science, 2012, 4(4): 262 CrossRef
  80. Tarakanov I.G., Tovstyko D.A., Lomakin M.P., Shmakov A.S., Sleptsov N.N., Shmarev A.N., Litvinskiy V.A., Ivlev A.A. Effects of light spectral quality on photosynthetic activity, biomass production, and carbon isotope fractionation in lettuce, Lactuca sativa L., plants. Plants, 2022, 11(3): 441 CrossRef
  81. Li Y.N., Liu N., Ji F., He D.X. Optimal red:blue ratio of full spectrum LEDs for hydroponic pakchoi cultivation in plant factory. Int. J. Agric. & Biol. Eng., 2022, 15(3): 72-77.
  82. Saapilin N.S., Yong W.T.L., Cheong B.E., Kamaruzaman K.A., Rodrigues K.F. Physiological and biochemical responses of Chinese cabbage (Brassica rapa var. chinensis) to different light treatments. Chem. Biol. Technol. Agric., 2022, 9: 27 CrossRef
  83. Tan T., Li S., Fan Y., Wang Z., Raza M.A., Shafiq I., Wang B., Wu X., Yong T., Wang X., Wu Y., Yang F., Yang W. Far-red light: A regulator of plant morphology and photosynthetic capacity. The Crop Journal, 2022, 10(2): 300-309 CrossRef
  84. Sheerin D.J., Hiltbrunner A. Molecular mechanisms and ecological function of far‐red light signalling. Plant, Cell & Environment, 2017, 40(11): 2509-2529 CrossRef
  85. Kusuma P., Bugbee B. On the contrasting morphological response to far-red at high and low photon fluxes. Front. Plant Sci., 2023, 14: 1185622 CrossRef
  86. Van de Velde E., Steppe K., Van Labeke M.C. Leaf morphology, optical characteristics and phytochemical traits of butterhead lettuce affected by increasing the far-red photon flux. Front. Plant Sci., 2023, 14: 1129335 CrossRef
  87. Kuleshova T.E., Gall’ N.R., Udalova O.R., Panova G.G. Agrofizika, 2020, 4: 33-39 (in Russ.).
  88. Liu J., van Iersel M.W. Far-red light effects on lettuce growth and morphology in indoor production are cultivar specific. Plants, 2022, 11(20): 2714 CrossRef
  89. Dou H., Niu G., Gu M. Pre-harvest UV-B radiation and photosynthetic photon flux density interactively affect plant photosynthesis, growth, and secondary metabolites accumulation in basil (Ocimum basilicum) plants. Agronomy, 2019, 9(8): 434 CrossRef
  90. Castillejo N., Martínez-Zamora L., Artés-Hernández F. Periodical UV-B radiation hormesis in biosynthesis of kale sprouts nutraceuticals. Plant Physiology and Biochemistry, 2021, 165: 274-285 CrossRef
  91. Ermakov E.I., Panova G.G., Chernousov I.N. Svetotekhnika, 2004, 5: 22-24 (in Russ.).
  92. He X., He R., Li Y., Liu K., Tan J., Chen Y., Liu X., Liu H. Effect of ratios of red and white light on the growth and quality of pak choi. Agronomy, 2022, 12(10): 2322 CrossRef
  93. Frąszczak B., Kula-Maximenko M. The preferences of different cultivars of lettuce seedlings (Lactuca sativa L.) for the spectral composition of light. Agronomy, 2021, 11(6): 1211 CrossRef
  94. Kuleshova T.E., Zhelnacheva P.V., Ezerina E.M., Vertebnyy V.E., Khomyakov Yu.V., Panova G.G., Kochetov A.A., Sinyavina N.G. Fiziologiya rasteniy, 2024, 71(2): 243-256 CrossRef (in Russ.).
  95. Kuleshova T.E., Udalova O.R., Balashova I.T., Anikina L.M., Kononchuk P.Yu., Mirskaya G.V., Dubovitskaya V.I., Vertebnyy V.E., Khomyakov Yu.V., Panova G.G. Zhurnal tekhnicheskoy fiziki, 2022, 92(7): 1060-1068 CrossRef (in Russ.).
  96. Jayalath T.C., van Iersel M.W. Canopy size and light use efficiency explain growth differences between lettuce and mizuna in vertical farms. Plants, 2021, 10(4): 704 CrossRef
  97. Kang J.H., KrishnaKumar S., Atulba S.L.S., Jeong B.R., Hwang S.J. Light intensity and photoperiod influence the growth and development of hydroponically grown leaf lettuce in a closed-type plant factory system. Hortic. Environ. Biotechnol., 2013, 54: 501-509 CrossRef
  98. Matysiak B., Ropelewska E., Wrzodak A., Kowalski A., Kaniszewski S. Yield and quality of romaine lettuce at different daily light integral in an indoor controlled environment. Agronomy, 2022, 12(5): 1026 CrossRef
  99. Pennisi G., Pistillo A., Orsini F., Cellini A., Spinelli F., Nicola S., Fernandez J., Crepaldi A., Gianquinto G., Marcelis L.F. Optimal light intensity for sustainable water and energy use in indoor cultivation of lettuce and basil under red and blue LEDs. Scientia Horticulturae, 2020, 272: 109508 CrossRef
  100. Gavhane K.P., Hasan M., Singh D.K., Kumar S.N., Sahoo R.N., Alam W. Determination of optimal daily light integral (DLI) for indoor cultivation of iceberg lettuce in an indigenous vertical hydroponic system. Scientific Reports, 2023, 13(1), 10923 CrossRef
  101. Kelly N., Choe D., Meng Q., Runkle E.S. Promotion of lettuce growth under an increasing daily light integral depends on the combination of the photosynthetic photon flux density and photoperiod. Scientia Horticulturae, 2020, 272: 109565 CrossRef
  102. Palmer S., van Iersel M.W. Increasing growth of lettuce and mizuna under sole-source LED lighting using longer photoperiods with the same daily light integral. Agronomy, 2020, 10(11): 1659 CrossRef
  103. Cruz S., Gómez C. Effects of daily light integral on compact tomato plants grown for indoor gardening. Agronomy, 2022, 12(7): 1704 CrossRef
  104. Lam V.P., Choi J., Park J. Enhancing growth and glucosinolate accumulation in watercress (Nasturtium officinale L.) by regulating light intensity and photoperiod in plant factories. Agriculture, 2021, 11(8): 723 CrossRef
  105. Kim S., Bok G., Shin J., Park J. Effects of photoperiod and light intensity on the growth and glucosinolates content of three Brassicaceae species in a plant factory. Journal of Bio-Environment Control, 2022, 31(4): 416-422 CrossRef
  106. Martinez-Nolasco C., Padilla-Medina J.A., Nolasco J.J. M., Guevara-Gonzalez R.G., Barranco-Gutiérrez A.I., Diaz-Carmona J.J. Non-invasive monitoring of the thermal and morphometric characteristics of lettuce grown in an aeroponic system through multispectral image system. Applied Sciences, 2022, 12(13): 6540 CrossRef
  107. Chen K., Yuan Y., Zhao B., Zhou L., Niu K., Jin X., Gao S., Li R., Guo H., Zheng Y. Digital twins and data-driven in plant factory: an online monitoring method for vibration evaluation and transplanting quality analysis. Agriculture, 2023, 13(6): 1165 CrossRef
  108. Wang X., Wu Z., Jia M., Xu T., Pan C., Qi X., Zhao M. Lightweight SM-YOLOv5 tomato fruit detection algorithm for plant factory. Sensors, 2023, 23(6): 3336 CrossRef
  109. Liu W., Xu M., Jiang H. Design, integration, and experiment of transplanting robot for early plug tray seedling in a plant factory. AgriEngineering, 2024, 6(1): 678-697 CrossRef
  110. Fukuda H., Wada T. Characteristics of vegetable growing in plant factories and technical issues. In: Plant factory using artificial light. M. Anpo, H. Fukuda, T. Wada (eds.). Elsevier, 2019: 25-31 CrossRef
  111. Lubna F.A., Lewus D.C., Shelford T.J., Both A.-J. What you may not realize about vertical farming. Horticulturae, 2022, 8(4): 322 CrossRef
  112. Specht K., Siebert R., Thomaier S., Freisinger U.B., Sawicka M., Dierich A., Henckel D., Busse M. Zero-acreage farming in the city of Berlin: an aggregated stakeholder perspective on potential benefits and challenges. Sustainability, 2015, 7(4): 4511-4523 CrossRef
  113. Santamaria P. Nitrate in vegetables: toxicity, content, intake and EC regulation. Journal of the Science of Food and Agriculture, 2006, 86(1): 10-17 CrossRef
  114. Kreuger M., Meeuws L., Meeuws G. Applications for breeding and high-wire tomato production in plant factory. In: Smart plant factory. T. Kozai (ed.). Springer, Singapore, 2018: 289-299 CrossRef
  115. Folta K.M. Breeding new varieties for controlled environments. Plant Biology, 2019, 21(S1): 6-12 CrossRef
  116. Xi L., Zhang M., Zhang L., Lew T.T., Lam Y.M. Novel materials for urban farming. Advanced Materials, 2022, 34(25): 2105009 CrossRef
  117. Csambalik L., Divéky-Ertsey A., Gál I., Madaras K., Sipos L., Székely G., Pusztai P. Sustainability perspectives of organic farming and plant factory systems — from divergences towards synergies. Horticulturae, 2023, 9(8): 895 CrossRef
  118. Awika H.O., Mishra A.K., Gill H., DiPiazza J., Avila C.A., Joshi V. Selection of nitrogen responsive root architectural traits in spinach using machine learning and genetic correlations. Scientific Reports, 2021, 11: 9536 CrossRef
  119. Egorova K.V., Sinyavina N.G., Artemyeva A.M., Kocherina N.V., Chesnokov Y.V. QTL Analysis of the content of some bioactive compounds in Brassica rapa L. grown under light culture conditions. Horticulturae, 2021, 7(12): 583 CrossRef
  120. Artemyeva A.M., Sinyavina N.G., Panova G.G., Chesnokov Yu.V. Biological features of Brassica rapa L. vegetable leafy crops when growing in an intensive light culture. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2021, 56(1): 103-120 CrossRef
  121. Lejeune P., Fratamico A., Bouché F., Huerga-Fernández S., Tocquin P., Périlleux C. LED color gradient as a new screening tool for rapid phenotyping of plant responses to light quality. GigaScience, 2022, 11: giab101 CrossRef
  122. Nguyen K.L., Phuong N.T.N., Tuan T.Q., Hang T.T. M. Evaluation of biological traits and bioactive compounds in several spinach varieties (Spinacia oleracea L.) grown in a vertical hydroponic system. Vietnam Journal of Agricultural Sciences, 2023, 6(1): 1699-1710 CrossRef
  123. Kurina A.B., Zheleznova K.O., Solovieva A.E., Sinyavina N.G., Panova G.G., Artemyeva A.M. Morphological and biochemica variability of VIR garden cress (Lepidium sativum L.) collection under intensive light culture. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2023, 58(5): 889-901 CrossRef
  124. Sinyavina N.G., Kochetov A.A., Kocherina N.V., Egorova K.V., Kurina A.B., Panova G.G., Chesnokov Y.V. Breeding approaches for controlled conditions of artificial light culture for small radish and radish (Raphanus sativus L.). Horticulturae, 2023, 9(6): 678 CrossRef

 

back

 


CONTENTS

 

Full article PDF (Eng)