PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2024.5.955eng

UDC: 633.11:631.522/.524:577.2

Acknowledgements:
Genes encoding Myc-like factors (Pp3, Ba1, ThMyc4E) were studied by O.Yu. Shoeva, E.I. Gordeeva, E.K. Khlestkina within the framework of the RSF project (No. 21-66-00012). Phenotypic assessment of rare species samples was carried out by M.E. Gashimov and K.U. Kurkiev within the framework of the research program "Bread of Russia".

 

STUDY OF RARE SPECIES OF WHEAT AS DONORS FOR BREEDING FOR FUNCTIONAL NUTRITION

O.Yu. Shoeva1, 2 , E.I. Gordeeva1, 2, E.K. Khlestkina1 ,2, M.E. Gashimov3, K.U. Kurkiev3

1Institute of Cytology and Genetics SB RAS, 10, pr. Akademika Lavrent’jeva, Novosibirsk, 630090 Russia, e-mail olesya_ter@bionet.nsc.ru (✉ corresponding author), elgordeeva@bionet.nsc.ru;
2Federal Research Center Vavilov All-Russian Institute of Plant Genetic Resources, 42-44, ul. Bol’shaya Morskaya, St. Petersburg, 190000 Russia, e-mail khlest@bionet.nsc.ru;
3Dagestan Experimental Station — Branch of Federal Research Center Vavilov All-Russian Institute of Plant Genetic Resources, Derbentsky District, Republic of Dagestan, pos. Vavilovo, 368612 Russia, e-mail gashimov.mirzackerim@yandex.ru, kkish@mail.ru

ORCID:
Shoeva O.Yu. orcid.org/0000-0001-5289-8631
Gashimov M.E. orcid.org/0009-0000-7608-2370
Gordeeva E.I. orcid.org/0000-0003-3166-7409
Kurkiev K.U. orcid.org/0000-0001-8232-6183
Khlestkina E.K. orcid.org/0000-0002-8470-8254

Final revision received April 27, 2024
Accepted June 19, 2024

Common wheat (Triticum aestivum L.), which accumulates anthocyanins in grain, is a promising raw material for the production of functional nutrition products. When creating anthocyanin-rich varieties of grain crops, the choice of suitable donors is important. In this work, for the first time, using a comprehensive analysis of anthocyanin pigmentation patterns of vegetative organs and grain in rare wheat species from the collection of the Vavilov All-Russian Institute of Plant Genetic Resources (VIR), donors of dominant alleles of the Ba, Pp-1, and Pp3 genes that control anthocyanin synthesis were identified, and their resistance to fungal diseases was assessed. The aim of the work was to study rare wheat species for the presence of anthocyanin pigmentation of grain and vegetative organs, identify donors of dominant alleles of the Ba, Pp-1 and Pp3 genes, and evaluate potential donors for resistance to fungal diseases. Manifestations of anthocyanin coloration of grain and vegetative organs were studied in 16 rare wheat species from the VIR collection: einkorn T. urartu Thum. ex Gandil (n = 68), T. boeoticum Boiss. (n = 99), T. monococcum L. (n = 113); emmer T. dicoccoides (Körn. ex Aschers. et Graebn.) Schweinf. (n = 256), T. dicoccum (Schrank) Schuebl. (n = 502), T. araraticum Jakubz. (n = 42), T. timopheevii Zhuk. (n = 45); naked tetraploids T. aethiopicum Jakubz. (n = 246), T. persicum Vav. (n = 140), T. polonicum L. (n = 61), T. turanicum Jakubz. (n = 38), T. turgidum L. (n = 421); spelt T. spelta L. (n = 231), T. macha Dekapr. et Menabde (n = 37); naked hexaploids T. compactum Host. (n = 616), T. sphaerococcum Perciv. (n = 54). A total of 2969 samples were analyzed. The presence of anthocyanin pigmentation of the coleoptile was assessed in 5-7-day-old seedlings germinated on Petri dishes at room temperature and natural light. The color of the leaf sheath, culm node, and leaf blade auricles was assessed at the Dagestan Experimental Station of VIR (41.98° N, 48.33° E) in 2019-2021. The color of the leaf sheath was determined in the interphase period of tube elongation-earing, the color of the sheaths was assessed in the three lower leaves, the color of the auricles and stem nodes was noted in the earing phase, examining at least 10 plants. For DNA genotyping, 65 accessions were selected from the studied wheat collection, including 22 T. boeoticum accessions (17 accessions with blue and 5 accessions with red grain coloration), 3 T. durum accessions (with purple, white, and red grain coloration), 8 T. spelta accessions (2 accessions with blue, 3 with white, and 3 with red grain coloration), and 32 T. aethiopicum accessions (23 accessions with purple, 1 with white, and 8 with red grain coloration). DNA was isolated from young leaves of five plants of each accession. The isolated DNA was analyzed by PCR using the intragenic markers Pp3-diagnostic and ThMyc4E-specific, developed for the anthocyanin biosynthesis genes Pp3 and Ba1, respectively. Phenological observations and assessment of the resistance of samples to fungal diseases against a natural infectious background were carried out at the Dagestan Experimental Station of VIR in 2017-2018. Resistance was assessed on a 9-point scale. The collection included 13 and 2 blue-grained samples of T. boeoticum and T. spelta, respectively, carrying dominant alleles of the Ba genes controlling the synthesis of anthocyanins in the aleurone layer of the grain, and 22 purple-grained samples of T. aethiopicum carrying dominant alleles of the Pp3 gene, which, together with the Pp-1 genes, controls the synthesis of anthocyanins in the pericarp of the grain. The presence of dominant alleles of the Ba and Pp3 genes in the genome of the identified accessions was confirmed using DNA genotyping with molecular markers. In addition, all T. timopheevii and most T. turanicum accessions were white-grained, which implies the presence of mutations in the genes controlling the synthesis of proanthocyanidins. Analysis of the color of vegetative organs showed that different wheat species are characterized by different pigmentation patterns, which implies, in addition to the known Pp-1 genes controlling the color of vegetative organs, the involvement of additional genes in the formation of the color of different parts of the plant. In most of the analyzed species, the color of the coleoptile often manifested itself together with the color of the leaf sheaths and auricles, with the exception of T. timopheevii and T. araraticum, which had color of the coleoptile and auricles, but no color of the leaf sheaths. The pigmentation of stem nodes often did not depend on the presence of anthocyanin pigment on other vegetative organs and, apparently, is inherited independently. The identified samples with anthocyanin pigmentation are promising donors for selection in order to obtain products intended for the functional nutrition diet, and uncolored samples are of interest as an identified gene pool for comparative genetic studies of the molecular genetic mechanisms of the formation of color traits in different wheat species.

Keywords: anthocyanin pigmentation, molecular markers, rare wheat species, functional food.  

 

REFERENCES

  1. Wang X., Zhang X., Hou H., Ma X., Sun S., Wang H., Kong L. Metabolomics and gene expression analysis reveal the accumulation patterns of phenylpropanoids and flavonoids in different colored-grain wheats (Triticum aestivum L.). Food Research International, 2020, 138(part A): 109711 CrossRef
  2. Garg M., Kaur S., Sharma A., Kumari A., Tiwari V., Sharma S., Kapoor P., Sheoran B., Goyal A., Krishania M. Rising demand for healthy foods-anthocyanin biofortified colored wheat is a new research trend. Frontiers in Nutrition, 2022, 9: 878221 CrossRef
  3. Castañeda-Ovando A., Pacheco-Hernández Ma de L., Páez-Hernández Ma.E., Rodríguez J.A., Galán-Vidal C.A. Chemical studies of anthocyanins: a review. Food Chemistry, 2009, 113(4): 859-871 CrossRef
  4. Abdel-Aal E.-S.M., Hucl P., Shipp J., Rabalski I. Compositional differences in anthocyanins from blue- and purple-grained spring wheat grown in four environments in central Saskatchewan. Cereal Chemistry, 2016, 93(1): 32-38 CrossRef
  5. Abdel-Aal E.S.M., Hucl P. Composition and stability of anthocyanins in blue-grained wheat. Journal of Agricultural and Food Chemistry, 2003, 51(8): 2174-2180 CrossRef
  6. Sharma N., Tiwari V., Vats S., Kumari A., Chunduri V., Kaur S., Kapoor P, Garg M. Evaluation of anthocyanin content, antioxidant potential and antimicrobial activity of black, purple and blue colored wheat flour and wheat-grass juice against common human pathogens. Molecules, 2020, 25(24): 5785 CrossRef
  7. Ficco D.B.M., Mastrangelo A.M., Trono D., Borrelli G.M., De Vita P., Fares C., Beleggia R., Platani C., Papa R. The colours of durum wheat: a review. Crop and Pasture Science, 2014, 65(1): 1-15 CrossRef
  8. Tian S.-Q., Chen Z.-C., Wei Y.-C. Measurement of colour-grained wheat nutrient compounds and the application of combination technology in dough. Journal of Cereal Science, 2018, 83: 63-67 CrossRef
  9. Granda L., Rosero A., Benešová K., Pluháčková H., Neuwirthová J., Cerkal R. Content of selected vitamins and antioxidants in colored and nonpigmented varieties of quinoa, barley, and wheat grains. Journal of Food Science, 2018, 83(10): 2439-2447 CrossRef
  10. Dhua S., Kumar K., Kumar Y., Singh L., Sharanagat V.S. Composition, characteristics and health promising prospects of black wheat: a review. Trends in Food Science and Technology, 2021, 112: 780-794 CrossRef
  11. Gamel T.H., Saeed S.M.G., Ali R., Abdel-Aal E.S.M. Purple wheat: food development, anthocyanin stability, and potential health benefits. Foods, 2023, 12(7): 1358 CrossRef
  12. Khlestkina E.K., Pshenichnikova T.A., Usenko N.I., Otmakhova Yu.S. Vavilovskiy zhurnal genetiki i selektsii, 2016, 20(4): 511-527 CrossRef (in Russ.).
  13. Usenko N.I., Khlestkina E.K., Asavasanti S., Gordeeva E.I., Yudina R.S., Otmakhova Y.S. Possibilities of enriching food products with anthocyanins by using new forms of cereals. Foods and Raw Materials, 2018, 6(1): 128-135 CrossRef
  14. Fisenko A.V., Kalmykova L.P., Kuznetsova N.L., Kuz’mina N.P., Ermolenko O.I., Upelniek V.P. Agrarnaya Rossiya, 2020, 10: 43-48 CrossRef (in Russ.).
  15. Stepochkin P.I., Gordeeva E.I., Khlestkina E.K. Trudy po prikladnoy botanike, genetike i selektsii, 2023, 184(2): 139-148 CrossRef (in Russ.).
  16. Gordeeva E.I., Shamanin V.P., Khlestkina E.K., Shoeva O.Yu. On peculiarities of breeding purple-grained wheat based on varieties with anthocyanin pigmentation of coleoptiles and stems. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2024, 59(3): 507-524 CrossRef
  17. Vasilova N.Z., Askhadullin D.F., Askhadullin D.F., Bagavieva E.Z., Tazutdinova M.R., Khusainova I.I. Zernobobovye i krupyanye kul’tury, 2021, 4(40): 66-75 CrossRef (in Russ.).
  18. Rubets V.S., Voronchikhina I.N., Igonin V.N., Sidorenko V.S., Voronchikhin V.V. Mezhdunarodnyy sel’skokhozyaystvennyy zhurnal, 2022, 65(5(389)): 525-529 CrossRef (in Russ.).
  19. Shamanin V.P., Pototskaya I.V., Chursin A.S., Shepelev S.S., Nardin D.S., Pozherukova V.E., Köksel H., Morgounov A.I. Breeding spring bread wheat (Triticum aestivum L.) varieties with functional properties of grain for environmentally friendly growing in Western Siberia. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2024, 59(3): 492-506 CrossRef
  20. Adzhieva V.F., Babak O.G., Shoeva O.Yu., Kil’chevskiy A.V., Khlestkina E.K. Vavilovskiy zhurnal genetiki i selektsii, 2015, 19(5): 561-573 CrossRef (in Russ.).
  21. Durbin M.L., Lundy K.E., Morrell P.L., Torres-Martinez C.L., Clegg M.T. Genes that determine flower color: the role of regulatory changes in the evolution of phenotypic adaptations. Molecular Phylogenetics and Evolution, 2003, 29(3): 507-518 CrossRef
  22. Khlestkina E.K. Vavilovskiy zhurnal genetiki i selektsii, 2014, 16(1): 202-216 (in Russ.).
  23. Shoeva O.Y., Gordeeva E.I., Khlestkina E.K. The regulation of anthocyanin synthesis in the wheat pericarp. Molecules, 2014, 19(12): 20266-20279 CrossRef
  24. Jiang W., Liu T., Nan W., Jeewani D.C., Niu Y., Li C., Wang Y., Shi X., Wang C., Wang J., Li Y., Gao X., Wang Z. Two transcription factors TaPpm1 and TaPpb1 co-regulate anthocyanin biosynthesis in purple pericarps of wheat. Journal of Experimental Botany, 2018, 69(10): 2555-2567 CrossRef
  25. Zong Y., Xi X., Li S., Chen W., Zhang B., Liu D., Liu B., Wang D., Zhang H. Allelic variation and transcriptional isoforms of wheat TaMYC1 gene regulating anthocyanin synthesis in pericarp. Frontiers in Plant Science, 2017, 8: 1645 CrossRef
  26. Gordeeva E., Shamanin V., Shoeva O., Kukoeva T., Morgounov A., Khlestkina E. The strategy for marker-assisted breeding of anthocyanin-rich spring bread wheat (Triticum aestivum L.) cultivars in Western Siberia. Agronomy, 2020, 10(10): 1603 CrossRef
  27. Gordeeva E.I., Shoeva O.Yu., Shamanin V.P., Khlestkina E.K. Pis’ma v Vavilovskiy zhurnal genetiki i selektsii, 2023, 9: 86-89 CrossRef (in Russ.).
  28. Shoeva O.Yu., Gordeeva E.I., Khlestkina E.K. Vnutrigennyy DNK-marker dlya otbora pshenitsy s povyshennym soderzhaniem antotsianov v perikarpe zernovki. FGBNU FITs Institut tsitologii i genetiki Sibirskogo otdeleniya Rossiyskoy akademii nauk, № 2774444. Zayavl. 29.11.2021. Opubl. 21.06.2022. Byul. № 18 [Intragenic DNA marker for selection of wheat with increased anthocyanin content in the pericarp of the grain. FGBNU FRC Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, № 2774444. Appl. 11/29/2021. Publ. 06/21/2022. Bull. № 18](in Russ.).
  29. Himi E., Taketa S. Isolation of candidate genes for the barley Ant1 and wheat Rc genes controlling anthocyanin pigmentation in different vegetative tissues. Molecular Genetics and Genomics, 2015, 290: 1287-1298 CrossRef
  30. Zeven A.C. The colour of the coleoptile of wheat. 2. A review and geographical distribution of the purple coleoptile of Triticum aestivum. Euphytica, 1973, 22(3): 471-478 CrossRef
  31. Zeven A.C. Wheats with purple and blue grains: a review. Euphytica, 1991, 56(3): 243-258 CrossRef
  32. Li N., Li S., Zhang K., Chen W., Zhang B., Wang D., Liu D., Liu B., Zhang H. ThMYC4E, candidate Blue aleurone 1 gene controlling the associated trait in Triticum aestivum. PLoS ONE, 2017, 12(7): e0181116 CrossRef
  33. Liu X., Zhang M., Jiang X., Li H., Jia Z., Hao M., Jiang B., Huang L., Ning S., Yuan Z., Chen X., Chen X., Liu D., Liu B., Zhang L. TbMYC4A is a candidate gene controlling the blue aleurone trait in a wheat-Triticum boeoticum substitution line. Frontiers in Plant Science, 2021, 12: 762265 CrossRef
  34. Himi E., Noda K. Red grain colour gene (R) of wheat is a Myb-type transcription factor. Euphytica, 2005, 143: 239-242 CrossRef
  35. Volkova G.V., Anpilogova L.K., Kremneva O.Yu., Andronova A.E., Kovalenko L.S., Vaganova O.F., Mitrofanova O.P. Vestnik zashchity rasteniy, 2011, 2: 40-45 (in Russ.).
  36. Goncharov N.P. Sravnitel’naya genetika pshenits i ikh sorodichey [Comparative genetics of wheat and its relatives]. Novosibirsk, 2002 (in Russ.).
  37. Solov’ev D.V., Konoplev S.A., Grebenkina A.M. Agroklimaticheskie resursy Dagestanskoy ASSR [Agroclimatic resources of the Dagestan ASSR]. Leningrad, 1975 (in Russ.).
  38. Plaschke J., Ganal M.W., Röder M.S. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theoretical and Applied Genetics, 1995, 91: 1001-1007 CrossRef
  39. Merezhko A.F., Udachin R.A., Zuev E.V., Filatenko A.A., Serbin A.A., Lyapunova O.A., Kosov V.Yu., Kurkiev U.K., Okhotnikova T.V., Navruzbekov N.A., Boguslavskiy R.L., Abdulaeva A.K., Chikida N.N., Mitrofanova O.P., Potokina S.A. Popolnenie, sokhranenie v zhivom vide i izuchenie mirovoy kollektsii pshenitsy, egilopsa i tritikale. Metodicheskie ukazaniya /Pod redaktsiey A.F. Merezhko [Replenishment, preservation in living form and study of the world collection of wheat, aegilops and triticale. Methodical instructions. A.F. Merezhko (ed.)]. St. Petersburg, 1999 (in Russ.).
  40. Singh K., Ghai M., Garg M., Chhuneja P., Kaur P., Schnurbusch T., Keller B., Dhaliwal H.S. An integrated molecular linkage map of diploid wheat based on a Triticum boeoticum ½ T. monococcum RIL population. Theoretical and Applied Genetics, 2007, 115: 301-312 CrossRef
  41. Dubcovsky J., Luo M.-C., Zhong G.-Y., Bransteitter R., Desai A., Kilian A., Kleinhofs A., Dvorak J. Genetic map of diploid wheat, Triticum monococcum L., and its comparison with maps of Hordeum vulgare L. Genetics, 1996, 143(2): 983-999 CrossRef
  42. Liu X., Feng Z., Liang D., Zhang M., Liu X., Hao M., Liu D., Ning S., Yuan Z., Jiang B., Chen X., Chen X., Zhang L. Development, identification, and characterization of blue-grained wheat-Triticum boeoticum substitution lines. Journal of Applied Genetics, 2020, 61: 169-177 CrossRef
  43. Gordeeva E., Shoeva O., Mursalimov S., Adonina I., Khlestkina E. 2022. Fine points of marker-assisted pyramiding of anthocyanin biosynthesis regulatory genes for the creation of black-grained bread wheat (Triticum aestivum L.) Lines. Agronomy, 2022, 12(12): 2934 CrossRef
  44. Arbuzova V.S., Badaeva E.D., Efremova T.T., Osadchaya T.S., Trubacheeva N.V., Dobrovolskaya O.B., A cytogenetic study of the blue-grain line of the common wheat cultivar Saratovskaya 29. Russian Journal of Genetics, 2012, 48: 785-791 CrossRef
  45. Gordeeva E., Badaeva E., Yudina R., Shchukina L., Shoeva O., Khlestkina E. Marker-assisted development of a blue-grained substitution line carrying the Thinopyrum ponticum chromosome 4Th(4D) in the spring bread wheat Saratovskaya 29 background. Agronomy, 2019, 9(11): 723 CrossRef
  46. Zheng Q., Li B., Li H., Li Z. Utilization of blue-grained character in wheat breeding derived from Thinopyrum poticum. Journal of Genetics and Genomics, 2009, 36(9): 575-580 CrossRef
  47. Burešová V., Kopecký D., Bartoš J., Martinek P., Watanabe N., Vyhnánek T., Doležel J. Variation in genome composition of blue-aleurone wheat. Theoretical and Applied Genetics, 2015, 128: 273-282 CrossRef
  48. Martinek P., Škorpík M., Chrpová J., Fučík P., Schweiger J. Development of the new winter wheat variety Skorpion with blue grain. Czech Journal of Genetics and Plant Breeding, 2013, 49: 90-94 CrossRef
  49. Dorofeev V.F., Filatenko A.A., Migushova E.F., Udachin R.A., Yakubtsiner M. Kul’turnaya flora SSSR. Tom 1 [Cultural flora of the USSR. Volume 1]. Moscow, 1979 (in Russ.).
  50. Habtemariam G., Mekbib H. Characterization and preliminary evaluation of ethiopian Triticum polonicum germplasm accession. PGRC/E-ICCA Germplasm Newsletter, 1988: 2-7.
  51. Belay G., Tesemma T., Bechere E., Mitiku D. Natural and human selection for purple-grain tetraploid wheats in the Ethiopian highlands. Genetic Resources and Crop Evolution, 1995, 42: 387-391 CrossRef
  52. Khlestkina E.K., Gordeeva E.I., Shoeva O.Yu., Kukoeva T.V., Shamanin V.P., Morgunov A.I. Sposob otbora liniy yarovoy myagkoy pshenitsy s povyshennym soderzhaniem antotsianov v zerne. FGBNU FITs Institut tsitologii i genetiki Sibirskogo otdeleniya Rossiyskoy akademii nauk, № 2762804. Zayavl. 09.02.2021. Opubl. 23.12.2021. Byul. № 36 [Method for selection of spring soft wheat lines with increased anthocyanin content in grain. FGBNU FRC Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, № 2762804. Appl. 02/09/2021. Publ. 12/23/2021. Bull. № 36](in Russ.).
  53. Bustos D.V., Riegel R., Calderini D.F. Anthocyanin content of grains in purple wheat is affected by grain position, assimilate availability and agronomic management. Journal of Cereal Science, 2012, 55(3): 257-264 CrossRef

 

back

 


CONTENTS

 

Full article PDF (Eng)