PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2024.5.927eng

UDC: 579.841.3:579.64:579.262:582.736

Acknowledgements:
We would like to thank the management and coordinators of the Lena 2021 expedition for organizing and conducting the expedition to the Lena River Delta area. We would like to express our sincere gratitude to Sergei A. Pravkin (AARI) for his assistance in collecting and transporting legume seeds. We would like to thank the staff of the Samoylovskoy Island research station and personally Fyodor V. Selyakhov for the provided transport.
The work was carried out using the equipment of the Genome Technologies, Proteomics and Cell Biology Collective Use Center of the All-Russian Research Institute for Agricultural Microbiology.
Supported financially by the Russian Science Foundation (RSF project No. 20-76-10042- П)

 

THE GENETIC DIVERSITY AND SYMBIOTIC EFFICIENCY OF THE NODULE MICROSYMBIONTS ISOLATED FROM Oxytropis taimyrensis (Jurtz.) A. et D. Love, Astragalus frigidus (L.) A. Gray AND Astragalus tugarinovii Basil. FROM ARCTIC YAKUTIA

I.G. Kuznetsova1 , D.S. Karlov1, P.V. Guro1, А.L. Sazanova1,
N.Yu. Tikhomirova1, N.N. Lashchinskiy2, А.А. Belimov1, V.I. Safronova1

1All-Russian Research Institute for Agricultural Microbiology, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia, e-mail ig.kuznetsova@arriam.ru (✉ corresponding author), ds.karlov@arriam.ru, guro.pv@arriam.ru, anna_sazanova@mail.ru, n_tikhomirova@rambler.ru, belimov@arriam.ru, vi.safronova@arriam.ru;
2Central Siberian Botanical Garden, Siberian Branch RAS, 101, ul. Zolotodolinskaya, Novosibirsk, 630090 Russia, e-mail nick_lash@mail.ru

ORCID:
Kuznetsova I.G. orcid.org/0000-0003-0260-7677
Tikhomirova N.Yu. orcid.org/0000-0001-8530-6698
Karlov D.S. orcid.org/0000-0002-9030-8820
Lashchinskiy N.N. orcid.org/0000-0002-4196-7619
Guro P.V. orcid.org/0000-0001-5754-6926
Belimov A.A. orcid.org/0000-0002-9936-8678
Sazanova A.L. orcid.org/0000-0002-4808-320X
Safronova V.I. orcid.org/0000-0003-4510-1772

Final revision received April 18, 2024
Accepted May 12, 2024

Legumes have significant potential for introduction into the Arctic regions of Russia. One of the key characteristics of legumes is the ability to form nitrogen-fixing symbioses with nodule bacteria (rhizobia). However, insufficient attention has been paid to the study of the biodiversity and symbiotic efficiency of Arctic rhizobia in Russia. The present work describes for the first time 13 strains of the order Hyphomicrobiales (formerly Rhizobiales) isolated from nodules of Oxytropis taimyrensis, Astragalus frigidus and A. tugarinovii growing in Arctic Yakutia. The ability of nine rhizobial strains Rhizobium sp. 7/1-1, 19-1/1, 20-1/1 and 33-1/1, R. giardinii 20/1-1, M. norvegicum 20/1-4 and Mesorhizobium sp. 9-4/1, 25-2/1 and 32-2/1 to nodulate the wild Arctic legumes Oxytropis adamsiana and Astragalus frigidus and the fodder legumes Trifolium repens and Medicago sativa was investigated under the conditions of a sterile test-tube experiment. The aim of the work was to isolate and study the genetic diversity of strains of the order Hyphomicrobiales isolated from nodules of the wild legumes Oxytropis taimyrensis (Jurtz.) A. et D. Love, Astragalus frigidus (L.) A. Gray and Astragalus tugarinovii Basil, collected in the Arctic zone of Yakutia, and to determine the ability of rhizobial strains to form nitrogen-fixing nodules on the roots of fodder and wild legumes Trifolium repens L., Medicago sativa L., Oxytropis adamsiana (Trautv.) Jurtzev and Astragalus frigidus (L.) A.Gray under the conditions of a sterile test-tube cross-nodulation experiment. Root nodules of wild populations of O. taimyrensis, A. frigidus, A. tugarinonovii were collected in 2021 near the lake Sevastyan-Kyule and on Tit-Ary during the Russian-German expedition to the Lena River Delta. Rhizobial strains were isolated from legume nodules by standard methods using mannitol-yeast YMA nutrient medium. Genomic DNA was isolated from pure cultures using the DNeasy Blood&Tissue Kit (QIAGEN, Germany) and Monarch® (New England Biolabs, USA).  The primary identification of the strains was carried out by PCR followed by sequencing of the 16S rRNA marker gene (rrs) fragment (900-1400 bp). The ability of nine Arctic strains of the genera Rhizobium and Mesorhizobium to form nitrogen-fixing nodules on the roots of Trifolium repens L., Medicago sativa L., O. adamsiana and A. frigidus was studied under the conditions of sterile test-tube experiment. The strains studied were isolated in the present work and previously from nodules of the Arctic legumes Lathyrus palustris L., Vicia cracca L. and Hedysarum arcticum B. Fedtsch growing in the Lena River delta. Plants were grown in sterile 50 ml glass vessels containing 3 g vermiculite and 6 ml of Krasilnikov-Korenyako medium. Seedlings were inoculated with suspensions of individual strains at 106 c ells/vessel. Commercial strains of Rhizobium leguminosarum RCAM1365 and Sinorhizobium meliloti RCAM1750 from the Russian Collection of Agricultural Microorganisms (RCAM, ARRIAM, St. Petersburg) were used as positive controls. Non-inoculated plants were used as negative controls. At the end of cultivation, nodules were counted and crude plant biomass was determined. Nitrogen fixation activity was determined by the acetylene method using a GC-2014 gas chromatograph (Shimadzu, Japan). The obtained isolates were assigned to the genera Rhizobium (family Rhizobiaceae), Mesorhizobium (family Phyllobacteriaceae), Bosea (family Boseaceae) and Tardiphaga (family Bradyrhizobiaceae). The strains Rhizobium sp. 7/1-1, Tardiphaga robiniae 7/2-2 and 7/4-2 were isolated from A. tugarinovii, the strains Mesorhizobium sp. 25-2/1, 25A/5-1, Bosea sp. 25A/1-3, B. lathyri 25A/2-1, B. psychrotolerans 25A/2-2 and 25A/4-1 were isolated from A. frigidus, whereas the strains Mesorhizobium sp. 9-4/1, T. robiniae 9/1-5, 9/3-1 and 9/5-1 were isolated from nodules of O. taimyrensis. Under sterile test-tube experiments the strain R. giardinii 20/1-1 did not form nodules in any of the inoculation variants, whereas the other eight strains were able to form both ineffective and nitrogen-fixing nodules depending on the legume inoculation variant. With respect to the native Arctic species O. adamsiana and A. frigidus, strains isolated from native legumes (O. taimyrensis, A. frigidus, H. arcticum) were more active, whereas the cultivated plants M. sativa and T. repens were more responsive to inoculation with strains isolated from introduced plants L. palustris and V. cracca. The ability of O. adamsiana to form an effective symbiosis with M. norvegicum 20/1-4, Mesorhizobium sp. 9-4/1 and 25-2/1, isolated from representatives of the legume genera Hedysarum, Oxytropis and Astragalus, respectively, indicates a low host specificity of this plant species, which may presumably allow it to use the resource potential of a wide range of symbiotic microorganisms inhabiting the soil of various Arctic regions. The O. adamsiana species is widespread in the Far North and is an important high-protein component of the diet of local animals, which makes it a promising species for the establishment of perennial pasture and hay phytocenoses in extreme Arctic conditions.

Keywords: Arctic Yakutia, legumes, pasture and hay agrophytocenoses, legume-rhizobial symbiosis, nitrogen-fixing nodule bacteria.

 

REFERENCES

  1. Unc A., Altdorff D., Abakumov E., Adl S., Baldursson S., Bechtold M., Cattani D., Firbank L., Grand S., Gudjonsdottir M., Kallenbach C., Kedir A., Li P., McKenzie D., Misra D., Nagano H., Neher D., Niemi J., Oelbermann M., Borchard N. Expansion of agriculture in northern cold-climate regions: a cross-sectoral perspective on opportunities and challenges. Frontiers in Sustainable Food Systems, 2021, 5: 663448 CrossRef
  2. Naydenov N.D. Nauchnyy vestnik Yamalo-Nenetskogo avtonomnogo okruga, 2020, 3(108): 12-17 (in Russ.).
  3. Surovtsev V.N. Arktika: ekologiya i ekonomika, 2023, 13(1): 149-157 CrossRef (in Russ.).
  4. Khantimer I.S. Sel’skokhozyaystvennoe osvoenie tundry [Agricultural development of the tundra]. Leningrad, 1974 (in Russ.).
  5. Kamelin R.V. Flora Zemli: floristicheskoe rayonirovanie sushi [Flora of the Earth: floristic zoning of land]. St. Petersburg, Barnaul, 2017 (in Russ.).
  6. Rhodes I., Collins R.P., Evans D.R. Breeding white clover for tolerance to low temperature and grazing stress. Euphytica, 1994, 77: 239-242 CrossRef
  7. Roumiantseva M.L., M.E. Vladimirova, V.S. Muntyan, G.V. Stepanova, A.S. Saksaganskaya, A.P. Kozhemyakov, A.G. Orlova, A. Becker, B.V. Simarov Highly effective root nodule inoculants of alfalfa (Medicago varia L.): molecular-genetic analysis and practical usage in cultivar creation. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2019, 54(6): 1306-1323 CrossRef
  8. Kormovye rasteniya senokosov i pastbishch SSSR. Tom 2. Dvudol’nye (Khlorantovye – Bobovye) /Pod redaktsiey I.V. Larina [Forage plants of hayfields and pastures of the USSR. Volume 2. Dicotyledons (Chloranthophytes – Legumes). I.V. Larin (ed.)]. Leningrad, 1951 (in Russ.).
  9. Rozenfel’d S.B. Pitanie kazarok i gusey v Rossiyskoy Arktike [Feeding of brants and geese in the Russian Arctic]. Moscow, 2009 (in Russ.).
  10. Sekretareva N.A. Sosudistye rasteniya Rossiyskoy Arktiki i sopredel’nykh territoriy [Vascular plants of the Russian Arctic and adjacent territories]. Moscow, 2004 (in Russ.). 
  11. Malyshev L.I. Turczaninowia, 2008, 11(3):5-141 (in Russ.).
  12. Kholina A.B., Artyukova E.V., Yakubov V.V., Khoreva M.G., Mochalova O.A., Sandanov D.V., Selyutina I.Yu. Izvestiya Rossiyskoy akademii nauk. Seriya biologicheskaya, 2023, 1: 11-21 CrossRef (in Russ.).
  13. Spiridonov A.M. Mnogoletnie bobovye travy v zemledelii i kormoproizvodstve Severo-Zapada RF: monografiya [Perennial legumes in agriculture and forage production in the North-West of the Russian Federation: monograph]. Moscow, Berlin, 2021 CrossRef (in Russ.).
  14. Ekologicheskie osnovy upravleniya produktivnost’yu agrofitotsenozov vostochnoevropeyskoy tundry /Pod redaktsiey I.B. Archegovoy, M.V. Getsen [Ecological bases of productivity management of agrophytocenoses of the Eastern European tundra. I.B. Archegova, M.V. Getsen (eds.)]. Leningrad, 1991 (in Russ.).
  15. Kotelina N.S., Archegova I.B., Romanov G.G., Turubanova L.P. Osobennosti prirodopol’zovaniya i perspektivy prirodovosstanovleniya na Kraynem Severe Rossii [Peculiarities of nature management and prospects for nature restoration in the Far North of Russia]. Ekaterinburg, 1998 (in Russ.).
  16. Beermann F., Teltewskoi A., Fiencke C., Pfeiffer E.-M., Kutzbach L. Stoichiometric analysis of nutrient availability (N, P, K) within soils of polygonal tundra. Biogeochemistry, 2015, 122: 211-227 CrossRef
  17. Provorov N.A., Vorob’ev N.I. Geneticheskie osnovy evolyutsii rastitel’no-mikrobnogo simbioza /Pod redaktsiey I.A. Tikhonovicha [Genetic basis of the evolution of plant-microbe symbiosis. I.A. Tikhonovich (ed.)]. St. Petersburg, 2012 (in Russ.).
  18. Efrose R.C., Rosu C.M., Stedel C., Stefan A., Sirbu C., Gorgan L.D., Labrou N.E., Flemetakis E. Molecular diversity and phylogeny of indigenous Rhizobium leguminosarum strains associated with Trifolium repens plants in Romania. Antonie van Leeuwenhoek, 2018, 111: 135-153 CrossRef
  19. Youseif S.H., El-Megeed F.H.A., Mohamed A.H, Ageez A., Veliz E., Martínez-Romero E. Diverse Rhizobium strains isolated from root nodules of Trifolium alexandrinum in Egypt and symbiovars. Systematic and Applied Microbiology, 2021, 44(1): 126-156 CrossRef
  20. Kang W., Xu L., Jiang Z., Shi S. Genetic diversity and symbiotic efficiency difference of endophytic rhizobia of Medicago sativa. Canadian Journal of Microbiology, 2019, 65(1): 68-83 CrossRef
  21. Laguerre G., van Berkum P., Amarger N., Prevost D. Genetic diversity of rhizobial symbionts isolated from legume species within the genera Astragalus, Oxytropis, and Onobrychis. Applied and Environmental Microbiology, 1997, 63(12): 4748-4758 CrossRef
  22. Ampomah O.Y., Mousavi S.A., Lindstrom K., Huss-Danell K. Diverse Mesorhizobium bacteria nodulate native Astragalus and Oxytropis in arctic and subarctic areas in Eurasia. Systematic and applied microbiology, 2017, 40(1): 51-58 CrossRef
  23. Wdowiak S., Małek W. Numerical analysis of Astragalus cicer microsymbionts. Current Microbiology, 2000, 41: 142-148 CrossRef
  24. Kuznetsova I.G., Sazanova A.L., Safronova V.I., Pinaev A.G., Verkhozina A.V., Tikhomirova N.Y., Osledkin Y.S., Belimov A.A.Genetic diversity among microsymbionts of Lathyrus, Vicia, Oxytropis and Astragalus legume species from Baikal region.Agricultural Viology, 2015, 50(3): 345-352 CrossRef
  25. Safronova V.I., Guro P.V., Sazanova A.L., Kuznetsova I.G., Belimov A.A., Yakubov V.V., Chirak E.R., Afonin A.M., Gogolev Y.V., Andronov E.E., Tikhonovich I.A. Rhizobial microsymbionts of Kamchatka Oxytropis species possess genes of the Type III and VI secretion systems, which can affect the development of symbiosis. Molecular Plant-Microbe Interactions, 2020, 33(10): 1232-1241 CrossRef
  26. Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 1991, 173(2): 697-703 CrossRef
  27. Karlov D.S., Guro P.V., Sazanova A.L. I.G. Kuznetsova, N.Yu. Tikhomirova, N.N. Laschinsky, Pavlov I.S., Belimov A.A., Safronova V.I. Study of the genetic diversity and symbiotic efficiency of microsymbionts isolated from Lathyrus palustris L. and Vicia cracca L. growing in Arctic Yakutia. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2023, 58(3): 403-415 CrossRef
  28. Bol’shiyanov D.Yu., Savel’eva L.A., Pestryakova L.A., Vakhrameeva P.S., Baranskaya A.V. Izvestiya Russkogo geograficheskogo obshchestva, 2013, 145(2): 49-65 (in Russ.).
  29. Ivanova E.I. Vestnik SVFU, 2012, 9(3): 52-57 (in Russ.).
  30. Isaev A.P., Gabysheva L.P., Mikhaleva L.G., Solomonov N.G. Sovremennye problemy nauki i obrazovaniya, 2016, 6: 527 (in Russ.).
  31. Martínez-Hidalgo P., Ramírez-Bahena M.H., Flores-Félix J.D., Rivas R., Igual J.M., Mateos P.F., Martínez-Molina E., León-Barrios M., Peix Á., Velázquez E. Revision of the taxonomic status of type strains of Mesorhizobium loti and reclassification of strain USDA 3471T as the type strain of Mesorhizobium erdmanii sp. nov. and ATCC 33669T as the type strain of Mesorhizobium jarvisii sp. nov. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(Pt6): 1703-1708 CrossRef
  32. De Meyer S.E., Andrews M., James E.K., Willems A. Mesorhizobium carmichaelinearum sp. nov., isolated from Carmichaelineae spp. root nodules. International Journal of Systematic and Evolutionary Microbiology, 2019, 69(1): 146-152 CrossRef
  33. Lu Y.L., Chen W.F., Wang E.T., Han L.L., Zhang X.X., Chen W.X., Han S.Z. Mesorhizobium shangrilense sp. nov., isolated from root nodules of Caragana species. International Journal of Systematic and Evolutionary Microbiology, 2009, 59(12): 3012-3018 CrossRef
  34. Zheng W.T., Li Y. Jr., Wang R., Sui X.H., Zhang X.X., Zhang J.J., Wang E.T., Chen W.X. Mesorhizobium qingshengii sp. nov., isolated from effective nodules of Astragalus sinicus. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(6): 2002-2007 CrossRef
  35. De Meyer S.E., Willems A. Multilocus sequence analysis of Bosea species and description of Bosea lupini sp. nov., Bosea lathyri sp. nov. and Bosea robiniae sp. nov., isolated from legumes. International Journal of Systematic and Evolutionary Microbiology, 2012, 62(10): 2505-2510 CrossRef
  36. Albert R.A., McGuine M., Pavlons S.C., Roecker J., Bruess, J., Mossman S., Sun S., King M., Hong S., Farrance C.E., Danner J., Joung Y., Shapiro N., Whitman W.B., Busse H.J. Bosea psychrotolerans sp. nov., a psychrotrophic alphaproteobacterium isolated from Lake Michigan water. International Journal of Systematic and Evolutionary Microbiology, 2019, 69(5): 1376-1383 CrossRef
  37. Safronova V.I., Kuznetsova I. G., Sazanova A.L., Kimeklis A.K., Belimov A.A., Andronov E.E., Pinaev A.G., Chizhevskaya E.P., Pukhaev A.R., Popov K.P., Willems A., Tikhonovich I.A. Bosea vaviloviae sp. nov. a new species of slow-growing rhizobia isolated from nodules of the relict species Vavilovia formosa (Stev.) Fed. Antonie Van Leeuwenhoek, 2015, 107(4): 911-920 CrossRef
  38. Pulido-Suárez L., Flores-Félix J.D., Socas-Pérez N., Igual J.M., Velázquez E., Péix Á., León-Barrios M. Endophytic Bosea spartocytisi sp. nov. coexists with rhizobia in root nodules of Spartocytisus supranubius growing in soils of Teide National Park (Canary Islands). Systematic and Applied Microbiology, 2022, 45(6): 126374 CrossRef
  39. Sazanova A.L., Safronova V.I., Kuznetsova I.G., Karlov D.S., Belimov A.A., Andronov E.E., Chirak E.R., Popova J.P., Verkhozina A.V., Willems A., Tikhonovich I.A. Bosea caraganae sp. nov., a new species of slow-growing bacteria isolated from root nodules of the relict species Caragana jubata (Pall.) Poir. originating from Mongolia. International Journal of Systematic and Evolutionary Microbiology,2019, 69(9): 2687-2695 CrossRef
  40. Kuznetsova I.G., Karlov D.S., Sazanova A.L., Guro P.V., Alekhina I. A., Tikhomirova N.Yu., Pospelov I. N., Pospelova E.B., Belimov A.A., Safronova V.I. Genetic diversity of microsymbionts of legumes Lathyrus pratensis L., Vicia cracca L., Trifolium repens L., and Astragalus schelichowii Turcz. growing near Norilsk in Arctic Russia. Russian Journal of Plant Physiology, 2023, 70(8): 187 CrossRef
  41. De Meyer S.E., Coorevits A., Willems A. Tardiphaga robiniae gen. nov., sp. nov., a new genus in the family Bradyrhizobiaceae isolated from Robinia pseudoacacia in Flanders (Belgium). Systematic and Applied Microbiology, 2012, 35(4): 205-214 CrossRef
  42. Karlov D.S., Guro P.V., Kuznetsova I.G., Sazanova A.L., Alekhina I.A., Tikhomirova N.Yu., Lashchinsky N.N., Belimov A.A., Safronova V.I. Genetic identification of microsymbionts of the legume Hedysarum arcticum B. Fedtsch, growing on Samoylov Island in the Lena River Delta (Arctic Zone of Yakutia), Russia. Microbiology, 2024, 93: 380-384 CrossRef
  43. Kriss A.E., Korenyako A.I., Migulina V.M. Mikrobiologiya, 1941, 10(1): 61-71 (in Russ.).
  44. Prévost D., Bromfield E.S.P. Effect of low root temperature on symbiotic nitrogen fixation and competitive nodulation of Onobrychis viciifolia (sainfoin) by strains of arctic and temperate rhizobia. Biol. Fertil. Soils, 1991, 12(3): 161-164.
  45. Prévost D., Drouin P., Laberge S., Bertrand A., Cloutier J., Lévesque G. Cold-adapted rhizobia for nitrogen fixation in temperate regions. Canadian Journal of Botany, 2003, 81(12): 1153-1161 CrossRef
  46. Gage D.J. Infection and invasion of roots by symbiotic, nitrogen-fixing Rhizobia during nodulation of temperate legumes. Microbiology and Molecular Biology Reviews, 2004, 68(2): 280-300 CrossRef
  47. Ghobakhlou A.F., Johnston A., Harris L. Antoun H., Laberge S. Microarray transcriptional profiling of Arctic Mesorhizobium strain N33 at low temperature provides insights into cold adaption strategies. BMC Genomics, 2015, 16: 383 CrossRef

 

back

 


CONTENTS

 

Full article PDF (Eng)