PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2024.5.831eng

UDC: 577.21

Acknowledgements:
There was no external funding received for conducting the research

 

ENHANCING THE THROUGHPUT OF DESIGN–BUILD–TEST–LEARN CYCLE FOR THE FUTURE PERSPECTIVE OF SYNTHETIC BIOLOGY IN PLANTS (review)

S.S. Prasad1 ✉, U. Das2

1Department of Agriculture, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, Andhra Pradesh 522302, India, e-mail 5257shiv@gmail.com (✉ corresponding author);
2VIT School of Agricultural Innovations & Advanced Learning (VAIAL), Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India, e-mail: utpaldashorts14@gmail.com

ORCID:
Prasad S.S. orcid.org/0000-0002-5537-0565
Das U. orcid.org/0000-0002-2618-0287

Final revision received March 28, 2024
Accepted April 30, 2024

Plant synthetic biology is an emerging area that integrates engineering principles with biology to develop unique plant-based systems for a variety of applications, from biofuel production to crop improvements. This technology has the potential to transform agriculture, promote sustainable development, and address global concerns such as food security, climate change, and renewable energy. The Design–Build–Test–Learn (DBTL) cycle is essential in synthetic biology as it provides a systematic framework for planning, developing, testing, and refining synthetic biological systems. It enables researchers to iteratively tune the performance of biological circuits, making it a vital tool for creating complex biological systems with predictable and reliable behavior. However, it will confront constraints at each of its stages, including inefficient design processes, restricted supply of genetic parts, technical challenges in developing and managing biological systems, and difficulties in correctly monitoring system performance. To overcome bottlenecks in the DBTL cycle, various strategies can be employed, such as developing advanced computational tools for efficient design, expanding the genetic parts toolbox, improving the precision and scalability of genome editing techniques, and implementing high-throughput screening methods to accurately measure system performance. In this review article we will discuss the recent advances for improving the performance of DBTL cycle to overcome the bottlenecks.

Keywords: DBTL cycle, multi-omics, bio-orthogonal, microfluidics, isotopic tracers, LOICA, CRISPR.

 

REFERENCES

  1. Sala A., Woodruff D.R., Meinzer F.C. Carbon dynamics in trees: feast or famine? Tree Physiology, 2012, 32(6): 764-75 CrossRef
  2. Liang Z., Chen K., Li T., Zhang Y., Wang Y., Zhao Q., Liu J., Huawei Z., Liu C., Ran Y., Gao C. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nature Communications, 2017, 8(1): 14261 CrossRef
  3. Dlugosz E.M., Lenaghan S.C., Stewart C.N. Jr. A robotic platform for high-throughput protoplast isolation and transformation. Journal of Visualized Experiments, 2016, NA(115): 54300-NA CrossRef
  4. Mortimer J.C. Plant synthetic biology could drive a revolution in biofuels and medicine. Experimental Biology and Medicine, 2019, 244(4): 323-331 CrossRef
  5. Liu W., Stewart C.N. Plant synthetic biology. Trends in Plant Science, 2015, 20(5): 309-317 CrossRef
  6. Llorente B., Williams T.C., Goold H.D. The multiplanetary future of plant synthetic biology. Genes, 2018, 9(7): 348 CrossRef
  7. Tothill I.E. Biosensors developments and potential applications in the agricultural diagnosis sector. Computers and Electronics in Agriculture, 2001, 30(1-3): 205-218 CrossRef
  8. Boyle P.M., Burrill D.R., Inniss M.C., Agapakis C.M., Deardon A., DeWerd J.G., Gedeon M.A., Quinn J.Y., Paull M.L., Raman A.M., Theilmann, M.R., Wang L., Winn J.C., Medvedik O., Schellenberg K., Haynes K.A., Viel A., Brenner T.J., Church G.M., Shah J.V., Silver P.A. A BioBrick compatible strategy for genetic modification of plants. Journal of Biological Engineering, 2012, 6(1): 8 CrossRef
  9. Sainsbury F., Lomonossoff G.P. Transient expressions of synthetic biology in plants. Current Opinion in Plant Biology, 2014, 19: 1-7 CrossRef
  10. Yang Y., Chaffin T.A., Ahkami A.H., Blumwald E., Stewart C.N. Plant synthetic biology innovations for biofuels and bioproducts. Trends in Biotechnology, 2022, 40(12): 1454-1468 CrossRef
  11. Chao R., Mishra S., Si T., Zhao H. Engineering biological systems using automated biofoundries. Metabolic Engineering, 2017, 42: 98-108 CrossRef
  12. Kim B.-C.C., Moon C., Jeon B.S., Angenent L.T., Choi Y., Nam K. Shaping a reactor microbiome generating stable n-caproate productivity through Design-Build-Test-Learn approach. Chemical Engineering Journal, 2021, 425: 131587 CrossRef
  13. Pham H.L., Ho C.L., Wong A., Lee Y.S., Chang M.W. Applying the design-build-test paradigm in microbiome engineering. Current Opinion in Biotechnology, 2017, 48: 85-93 CrossRef
  14. Pouvreau B., Vanhercke T., Singh S. From plant metabolic engineering to plant synthetic biology: The evolution of the design/build/test/learn cycle. Plant Science, 2018, 273: 3-12 CrossRef
  15. Liao X., Ma H., Tang Y.J. Artificial intelligence: a solution to involution of design–build–test–learn cycle. Current Opinion in Biotechnology, 2022, 75: 102712 CrossRef
  16. Carbonell P., Jervis A.J., Robinson C.J., Yan C., Dunstan M., Swainston N., Vinaixa M., Hollywood K.A., Currin A., Rattray N.J.W., Taylor S., Spiess R., Sung R., Williams A.R., Fellows D., Stanford N.J., Mulherin P., Le Feuvre R., Barran P., Goodacre R., Turner N.J., Goble C., Chen G.G., Kell D.B., Micklefield J., Breitling R., Takano E., Faulon J.L., Scrutton N.S. An automated Design-Build-Test-Learn pipeline for enhanced microbial production of fine chemicals. Communications Biology, 2018, 1(1): 66 CrossRef
  17. Gurdo N., Volke D.C., McCloskey D., Nikel P.I. Automating the design-build-test-learn cycle towards next-generation bacterial cell factories. New Biotechnology, 2023, 74: 1-15 CrossRef
  18. Opgenorth P., Costello Z., Okada T., Goyal G., Chen Y., Gin J., Benites V., de Raad M., Northen T.R., Deng K., Deutsch S., Baidoo E.E.K., Petzold C.J., Hillson N.J., Garcia Martin H., Beller H.R. Lessons from two design–build–test–learn cycles of dodecanol production in Escherichia coli aided by machine learning. ACS Synthetic Biology, 2019, 8(6): 1337-1351 CrossRef
  19. Rizzo P., Chavez B.G., Leite Dias S., D'Auria J.C. Plant synthetic biology: from inspiration to augmentation. Current Opinion in Biotechnology, 2023, 79: 102857 CrossRef
  20. Cummins B., Vrana J., Moseley R.C., Eramian H., Deckard A., Fontanarrosa P., Bryce D., Weston M., Zheng G., Nowak J., Motta F.C., Eslami M., Johnson K.L., Goldman R.P., Myers C.J., Johnson T., Vaughn M.W., Gaffney N., Urrutia J., Gopaulakrishnan S., Biggers V., Higa T.R., Mosqueda L.A., Gameiro M., Gedeon T., Mischaikow K., Beal J., Bartley B., Mitchell T., Nguyen T.T., Roehner N., Haase S.B. Robustness and reproducibility of simple and complex synthetic logic circuit designs using a DBTL loop. Synth. Biol. (Oxf.), 2023, 8(1): ysad005 CrossRef
  21. Vidal G., Vidal-Céspedes C., Rudge T.J. LOICA: Logical Operators for Integrated Cell Algorithms. In: bioRxiv, Cold Spring Harbor Laboratory, 2021 CrossRef
  22. HamediRad M., Chao R., Weisberg S., Lian J., Sinha S., Zhao H. Towards a fully automated algorithm driven platform for biosystems design. Nature Communications, 2019, 10(1): 5150 CrossRef
  23. Yang Y., Geng B., Song H., Hu M., He Q., Chen S., Bai F., Yang S. [Progress and perspective on development of non-model industrial bacteria as chassis cells for biochemical production in the synthetic biology era]. Sheng wu gong cheng xue bao = Chinese Journal of Biotechnology, 2021, 37(3): 874-910 CrossRef
  24. Feith A., Schwentner A., Teleki A., Favilli L., Blombach B., Takors R. Streamlining the analysis of dynamic 13C-labeling patterns for the metabolic engineering of Corynebacterium glutamicum as l-histidine production host. Metabolites, 2020, 10(11): 458 CrossRef
  25. Czajka J.J., Banerjee D., Eng T., Menasalvas J., Yan C., Munoz Munoz N., Poirier B.C., Kim Y.-Mo, Baker S.E., Tang Y.J., Mukhopadhyay A. Optimizing a high performing multiplex-CRISPRi P. putida strain with integrated metabolomics and 13C-metabolic flux analyses. In: bioRxiv, Cold Spring Harbor Laboratory, 2021 CrossRef
  26. Lawson C.E. Retooling microbiome engineering for a sustainable future. mSystems, 2021, 6(4), e0092521 CrossRef
  27. Vavricka C.J., Hasunuma T., Kondo A. Dynamic metabolomics for engineering biology: accelerating learning cycles for bioproduction. Trends in Biotechnology, 2020, 38(1): 68-82 CrossRef
  28. Amer B., Baidoo E.E.K. Omics-driven biotechnology for industrial applications. Frontiers in Bioengineering and Biotechnology, 2021, 9: 613307 CrossRef
  29. Kim Y.-M., Petzold C.J., Kerkhoven E.J., Baker S.E. Editorial: Multi-omics technologies for optimizing synthetic biomanufacturing. Frontiers in Bioengineering and Biotechnology, 2021, 9: 818010 CrossRef
  30. Pathania R., Srivastava A., Srivastava S., Shukla P. Metabolic systems biology and multi-omics of cyanobacteria: Perspectives and future directions. Bioresource Technology, 2022, 343: 126007 CrossRef
  31. Gurdo N., Volke D.C., Nikel P.I. Merging automation and fundamental discovery into the design–build–test–learn cycle of nontraditional microbes. Trends in Biotechnology, 2022, 40(10): 1148-1159 CrossRef
  32. St. John P.C., Bomble Y.J. Approaches to computational strain design in the multiomics era. Frontiers in Microbiology, 2019, 10: 597 CrossRef
  33. Pomraning K.R., Dai Z., Munoz N., Kim Y.-M., Gao Y., Deng S., Kim J., Hofstad B.A., Swita M..S, Lemmon T., Collett J.R., Panisko E.A., Webb-Robertson B.M., Zucker J.D., Nicora C.D., De Paoli H., Baker S.E., Burnum-Johnson K.E., Hillson N.J., Magnuson J.K. Integration of proteomics and metabolomics into the design, build, test, learn cycle to improve 3-hydroxypropionic acid production in Aspergillus pseudoterreus. Frontiers in Bioengineering and Biotechnology, 2021, 9: 603832 CrossRef
  34. Dinglasan J.L.N., Reeves D.T., Hettich R.L., Doktycz M.J. Liquid chromatography coupled to refractive index or mass spectrometric detection for metabolite profiling in lysate-based cell-free systems. Journal of Visualized Experiments, 2021, (175): 10.3791/62852 CrossRef
  35. Garagounis C., Delkis N., Papadopoulou K.K. Unraveling the roles of plant specialized metabolites: using synthetic biology to design molecular biosensors. New Phytologist, 2021, 231(4): 1338-1352 CrossRef
  36. Whitford C.M., Cruz-Morales P., Keasling J.D., Weber T. The Design-Build-Test-Learn cycle for metabolic engineering of Streptomycetes. Essays in Biochemistry, 2021, 65(2): 261-275 CrossRef
  37. Lawson C.E., Harcombe W.R., Hatzenpichler R., Lindemann S.R., Löffler F.E., O'Malley M.A., García Martín H., Pfleger B.F., Raskin L., Venturelli O.S., Weissbrodt D.G., Noguera D.R., McMahon K.D. Common principles and best practices for engineering microbiomes. Nature Reviews Microbiology, 2019, 17(12): 725-741 CrossRef
  38. Gamboa-Melendez H., Larroude M., Park Y.K., Trebul P., Nicaud J.-M., Ledesma-Amaro R. Synthetic biology to improve the production of lipases and esterases (review). Methods Mol. Biol., 2018, 1835: 229-242 CrossRef
  39. Kothamachu V.B., Zaini S., Muffatto F. Role of digital microfluidics in enabling access to laboratory automation and making biology programmable. SLAS Technology, 2020, 25(5): 411-426 CrossRef
  40. Shih S.C.C., Moraes C. Next generation tools to accelerate the synthetic biology process. Integrative Biology, 2016, 8(5): 585-588 CrossRef
  41. Sohrabi S., Kassir N., Keshavarz Moraveji M. Droplet microfluidics: fundamentals and its advanced applications. RSC Advances, 2020, 10(46): 27560-27574 CrossRef
  42. Arazoe T., Kondo A., Nishida K. Targeted nucleotide editing technologies for microbial metabolic engineering. Biotechnology Journal, 2018, 13(9): 1700596 CrossRef
  43. Baltes N.J., Voytas D.F. Enabling plant synthetic biology through genome engineering. Trends in Biotechnology, 2015, 33(2): 120-131 CrossRef
  44. Delépine B., Duigou T., Carbonell P., Faulon J.-L. RetroPath2.0: A retrosynthesis workflow for metabolic engineers. Metabolic Engineering, 2018, 45: 158-170 CrossRef
  45. Carbonell P., Wong J., Swainston N., Takano E., Turner N.J., Scrutton N.S., Kell D.B., Breitling R., Faulon J.L. Selenzyme: enzyme selection tool for pathway design. Bioinformatics, 2018, 34(12): 2153-2154 CrossRef
  46. Swainston N., Dunstan M., Jervis A.J., Robinson C.J., Carbonell P., Williams A.R., Faulon J.L., Scrutton N.S., Kell D.B. PartsGenie: an integrated tool for optimizing and sharing synthetic biology parts. Bioinformatics, 2018, 34(13): 2327-2329 CrossRef
  47. Fields-Johnson C., Fike J., Galbraith J., Maguire R., Day S., Zedaker S., Mathis J. Pine sawdust biochar as a potential amendment for establishing trees in Appalachian mine spoils. REFORESTA, 2018, (6): 1-14 CrossRef
  48. Yáñez Feliú G., Earle Gómez B., Codoceo Berrocal V., Muñoz Silva M., Nuñez I.N., Matute T.F., Arce Medina A., Vidal G., Vitalis C., Dahlin J, Federici F, Rudge TJ.Flapjack: data management and analysis for genetic circuit characterization. ACS Synthetic Biology, 2021, 10(1): 183-191 CrossRef
  49. Orsi E., Claassens N.J., Nikel P.I., Lindner S.N. Growth-coupled selection of synthetic modules to accelerate cell factory development. Nature Communications, 2021, 12(1): 5295 CrossRef
  50. Gao Y., Fillmore T.L., Munoz N., Bentley G.J., Johnson C.W., Kim J., Meadows J.A., Zucker J.D., Burnet M.C., Lipton A.K., Bilbao A., Orton D.J., Kim Y.M., Moore R.J., Robinson E.W., Baker S.E., Webb-Robertson B.M., Guss A.M., Gladden J.M., Beckham G.T., Magnuson J.K., Burnum-Johnson K.E. High-throughput large-scale targeted proteomics assays for quantifying pathway proteins in Pseudomonas putida KT2440. Frontiers in Bioengineering and Biotechnology, 2020, 8: 603488 CrossRef
  51. Roy S., Radivojevic T., Forrer M., Marti J.M., Jonnalagadda V., Backman T., Morrell W., Plahar H., Kim J., Hillson N., Garcia Martin H. Multiomics data collection, visualization, and utilization for guiding metabolic engineering. Frontiers in Bioengineering and Biotechnology, 2021, 9: 612893 CrossRef
  52. Zhang J., Chen Y., Fu L., Guo E., Wang B., Dai L., Si T. Accelerating strain engineering in biofuel research via build and test automation of synthetic biology. Current Opinion in Biotechnology, 2021, 67: 88-98 CrossRef
  53. Radivojević T., Costello Z., Workman K., Garcia Martin H. A machine learning Automated Recommendation Tool for synthetic biology. Nature Communications, 2020, 11(1): 4879 CrossRef
  54. Kamran S., Shahid I., Baig D.N., Rizwan M., Malik K.A., Mehnaz S. Contribution of Zinc solubilizing bacteria in growth promotion and zinc content of wheat. Frontiers in Microbiology, 2017, 8: 2593 CrossRef
  55. Araki M., Cox R.S., Makiguchi H., Ogawa T., Taniguchi T., Miyaoku K., Nakatsui M., Hara K.Y., Kondo A. M-path: a compass for navigating potential metabolic pathways. Bioinformatics, 2015, 31(6): 905-911 CrossRef
  56. Nakazawa S., Imaichi O., Kogure T., Kubota T., Toyoda K., Suda M., Inui M., Ito K., Shirai T., Araki M. History-driven genetic modification design technique using a domain-specific lexical model for the acceleration of DBTL cycles for microbial cell factories. ACS Synthetic Biology, 2021, 10(9): 2308-2317 CrossRef
  57. Dunstan M.S., Robinson C.J., Jervis A.J., Yan C., Carbonell P., Hollywood K.A., Currin A., Swainston N., Feuvre R.L., Micklefield J., Faulon J.L., Breitling R., Turner N., Takano E., Scrutton N.S. Engineering Escherichia coli towards de novo production of gatekeeper (2S)-flavanones: naringenin, pinocembrin, eriodictyol and homoeriodictyol. Synthetic Biology, 2020, 5(1): ysaa012 CrossRef
  58. Ro D.-K., Paradise E.M., Ouellet M., Fisher K.J., Newman K.L., Ndungu J.M., Ho K.A., Eachus R.A., Ham T.S., Kirby J., Chang M.C., Withers S.T., Shiba Y., Sarpong R., Keasling J.D. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 2006, 440(7086): 940-943 CrossRef
  59. Westfall P.J., Pitera D.J., Lenihan J.R., Eng D., Woolard F.X., Regentin R., Horning T., Tsuruta H., Melis D.J., Owens A., Fickes S., Diola D., Benjamin K.R., Keasling J.D., Leavell M.D., McPhee D.J., Renninger N.S., Newman J.D., Paddon C.J. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proceedings of the National Academy of Sciences, 2012, 109(3): E111-118 CrossRef
  60. Chen R., Yang S., Zhang L., Zhou Y.J. Advanced strategies for production of natural products in yeast. iScience, 2020, 23(3): 100879 CrossRef
  61. Nielsen J., Keasling J.D. Engineering cellular metabolism. Cell, 2016, 164(6): 1185-1197 CrossRef
  62. Zhu X., Du C., Mohsin A., Yin Q., Xu F., Liu Z., Wang Z., Zhuang Y., Chu J., Guo M., Tian X. An efficient high-throughput screening of high gentamicin-producing mutants based on titer determination using an integrated Computer-Aided Vision Technology and Machine Learning. Analytical Chemistry, 2022, 94(33): 11659-11669 CrossRef
  63. Liu J.-M., Chen L., Jensen P.R., Solem C. Food grade microbial synthesis of the butter aroma compound butanedione using engineered and non-engineered Lactococcus lactis. Metabolic Engineering, 2021, 67: 443-452 CrossRef
  64. Ramzi A.B., Baharum S.N., Bunawan H., Scrutton N.S. Streamlining natural products biomanufacturing with omics and machine learning driven microbial engineering. Frontiers in Bioengineering and Biotechnology, 2020, 8: 608918 CrossRef
  65. Carbonell P., Le Feuvre R., Takano E., Scrutton N.S. In silico design and automated learning to boost next-generation smart biomanufacturing. Synthetic Biology, 2020, 5(1): ysaa020 CrossRef
  66. Freemont P.S. Synthetic biology industry: data-driven design is creating new opportunities in biotechnology. Emerging Topics in Life Sciences, 2019, 3(5): 651-657 CrossRef
  67. Zhu Q., Yu S., Zeng D., Liu H., Wang H., Yang Z., Xie X., Shen R., Tan J., Li H., Zhao X., Zhang Q., Chen Y., Guo J., Chen L., Liu Y.G. Development of “Purple Endosperm Rice” by engineering anthocyanin biosynthesis in the endosperm with a high-efficiency transgene stacking system. Molecular Plant, 2017, 10(7): 918-929 CrossRef
  68. Lin J., Lin W., Ng I. CRISPRa/i with Adaptive Single Guide Assisted Regulation DNA (ASGARD) mediated control of Chlorella sorokiniana to enhance lipid and protein production. Biotechnology Journal, 2022, 17(10): 2100514 CrossRef
  69. Kuivanen J., Holmström S., Lehtinen B., Penttilä M., Jäntti J. A high-throughput workflow for CRISPR/Cas9 mediated combinatorial promoter replacements and phenotype characterization in yeast. Biotechnology Journal, 2018, 13(9): 1700593 CrossRef
  70. Liu Z., Wang J., Nielsen J. Yeast synthetic biology advances biofuel production. Current Opinion in Microbiology, 2022, 65: 33-39 CrossRef
  71. Czajka J.J., Banerjee D., Eng T., Menasalvas J., Yan C., Munoz N.M., Poirier B.C., Kim Y.M., Baker S.E., Tang Y.J., Mukhopadhyay A. Tuning a high performing multiplexed-CRISPRi Pseudomonas putida strain to further enhance indigoidine production. Metabolic Engineering Communications, 2022, 15: e00206 CrossRef
  72. Vidal G., Vidal-Céspedes C., Rudge T.J. LOICA: integrating models with data for genetic network design automation. ACS Synthetic Biology, 2022, 11(5): 1984-1990 CrossRef
  73. Li X.X., Lan C., Li X.X., Hu Z., Jia B. A review on design-build-test-learn cycle to potentiate progress in isoprenoid engineering of photosynthetic microalgae. Bioresource Technology, 2022, 363: 127981 CrossRef
  74. Zhang M., Holowko M.B., Hayman Zumpe H., Ong C.S. Machine learning guided Batched design of a bacterial ribosome binding site. ACS Synthetic Biology, 2022, 11(7): 2314-2326 CrossRef
  75. Kamminga T., Slagman S.-J., Martins dos Santos V.A.P., Bijlsma J.J.E., Schaap P.J. Risk-based bioengineering strategies for reliable bacterial vaccine production. Trends in Biotechnology, 2019, 37(8): 805-816 CrossRef
  76. Ando D., García Martín H. Genome-scale 13C fluxomics modeling for metabolic engineering of Saccharomyces cerevisiae. Methods Mol. Biol., 2019, 1859: 317-345 CrossRef
  77. Sabzevari M., Szedmak S., Penttilä M., Jouhten P., Rousu J. Strain design optimization using reinforcement learning. PLOS Computational Biology, 2022, 18(6): e1010177 CrossRef

 

back

 


CONTENTS

 

Full article PDF (Eng)