doi: 10.15389/agrobiology.2022.5.897eng

UDC: 634:11:631.52



E.N. Sedov , T.V. Yanchuk, S.A. Korneeva, M.A. Makarkina

All-Russian Research Institute of Fruit Crop Breeding, p/o Zhilina, Orel District, Orel Province, 302530 Russia, e-mail (✉ corresponding author),,,

Sedov E.N.
Korneeva S.A.,
Yanchuk T.V.
Makarkina M.A.

Received March 24, 2022

Apple (Malus × domestica Borkh.) is one of the most economically important fruit crops with a predicted increase in global production. Apples are valued by nutritionists as an important source of sugars, ascorbic acid, other vitamins, trace elements, pectins and biologically active substances. Appearance (size, color) and aroma are the main factors of apple fruit attractiveness for the consumer. From an economic point of view, the main attention in recent decades has been paid to technological features, adaptability, productivity, keeping quality of fruits and resistance to diseases. Breeding research carried out in 1956-2021 at the oldest pomological All-Russian Research Institute of Fruit Crop Breeding (VNIISPK) which celebrated its 175th anniversary in 2020, resulted in 56 new apple cultivars, including 38 cultivars on a fundamentally new genetic basis. By the beginning of these studies in the orchards of central Russia, the main apple cultivars were landraces (Antonovka, Korichnoye Polosatoye, Osennye Polosatoye, Grushovka Moskovskaya and Papirovka) and the Michurin’s cultivars Pepin Shafranny, Bellefleur Kitayka, Bessemyanka Michurinskaya, Doch Korichnogo and Kitayka Zolotaya Rannya. At the first stage of our breeding program, the main methods were re-hybridization and breeding based on geographically remote crosses and open pollination. Veteran, Orlik, Pamyat Voinu, Orlovskoye Polosatoye and a number of other cultivars were created and released. Apple breeding at the polyploid level has been carried out since 1970. Triploid cultivars are characterized by more regular fruiting over the years, large fruit size and high marketability of fruits, and increased self-fertility. We have developed a technique for creating triploid apple cultivars and obtained a series of triploid cultivars from intervalent crosses (2n = 2×) × (2n = 4×). To date, 18 triploid cultivars have been released of which six are immune to scab. The best are the triploid ciultivars Rozhdestvenskoye (immune to scab) and Sinap Orlovsky, derived from two diploid cultivars due to the absence of chromosome reduction in one of the parents. These cultivars have become widespread, and each of them is zoned in four regions of Russia. Breeding of cultivars immune to scab has been carried out since 1977. A technique for selecting scab-immune cultivars and seedlings under artificial infection background has been developed. Twenty-four scab-immune cultivars were created and released, including six immune and triploid cultivars and four scab immune and columnar cultivars. The best immune cultivars are Bolotovskoe, Venyaminovskoe, Imrus, and Svezhest; Alexander Boyko, Vavilovskoe, Rozhdestvenskoe, Maslovskoe and Yablochny Spas are scab immune and triploid cultivars. Breeding of columnar apple cultivars has been carried out since 1984 resulting in five columnar cultivars Vostorg, Girlanda, Priokskoye, Poeziya, and Orlovskaya Yesenia. All of them, except for Orlovskaya Yesenia, are immune to scab. Apple breeding to improve the biochemical composition of fruits has been carried out since 1970. According to long-term data, Vavilovskoye (13.0 %) and Ministr Kiselev (13.1 %) are the cultivars with a high content of sugars, Ivanovskoye (19.5 mg/100 g), Veteran (19.4 mg/100 g) and Pepin Orlovsky (15.3 mg/100 g) are enriched with vitamin C, and Kandil Orlovsky (558 mg/100 g), Orlovsky Pioner (514 mg/100 g), Pamyati Khitrovo (480 mg/100 g) and Radost’ Nadezhdy (474 mg/100 g) have high content of P-active substances. In the future, we are planning to release new columnar triploid cultivars and triploid cultivars combining columnar habit and scab immunity (elite seedlings with such qualities have already been produced). Such apple hybrids have not yet existed either among cultivars or among wild forms.

Keywords: Malus × domestica Borkh., apple, breeding, repeated hybridization, polyploidy, cytoembriology, scab immunity, columnar habit, sugars, ascorbate, P-active substances.



  1. Food and Agriculture Organization of the United Nations. FAOSTAT, 2016. Available: No date.
  2. Migicovsky Z., Gardner K.M., Richards C., Thomas Chao C., Schwaninger H.R., Fazio G., Zhong G.Y., Myles S. Genomic consequences of apple improvement. Hortic Res., 2021, 8(1): 9 CrossRef
  3. Foreign Agricultural Service/USDA Global Market Analysis.  Fresh Apples, Grapes, and Pears: World Markets and Trade. June 2022. Available: No date.
  4. Vasile M., Bunea A., Ioan C.R., Ioan B.C., Socaci S., Viorel M. Phytochemical content and antioxidant activity of Malus domestica Borkh peel extracts. Molecules, 2021, 26(24): 7636 CrossRef
  5. Liu H., Liu Z., Wu Y., Zheng L., Zhang G. Regulatory mechanisms of anthocyanin biosynthesis in apple and pear. Int. J. Mol. Sci., 2021, 22(16): 8441 CrossRef
  6. Li Y., Sun H., Li J., Qin S., Yang W., Ma X., Qiao X., Yang B. Effects of genetic background and altitude on sugars, malic acid and ascorbic acid in fruits of wild and cultivated apples (Malus sp.). Foods, 2021, 10(12): 2950 CrossRef
  7. Tu S.-H., Chen L.-C., Ho Y.-S. An apple a day to prevent cancer formation: reducing cancer risk with flavonoids. J. Food Drug Anal.,2017, 25: 119-124 (doi: 10.1016/j.jfda.2016.10.016">CrossRef
  8. Peace C.P., Bianco L., Troggio M., van de Weg E., Howard N.P., Cornille A., Durel C.E., Myles S., Migicovsky Z., Schaffer R.J., Costes E., Fazio G., Yamane H., van Nocker S., Gottschalk C., Costa F., Chagné D., Zhang X., Patocchi A., Gardiner S.E., Hardner C., Kumar S., Laurens F., Bucher E., Main D., Jung S., Vanderzande S. Apple whole genome sequences: recent advances and new prospects. Hortic Res., 2019, 6: 59 CrossRef
  9. Flachowsky H., Le Roux P.M., Peil A., Patocchi A., Richter K., Hanke M.V. Application of a high-speed breeding technology to apple (Malus ½ domestica) based on transgenic early flowering plants and marker-assisted selection. New Phytol., 2011, 192(2): 364-377 CrossRef
  10. Igarashi M., Hatsuyama Y., Harada T., Fukasawa-Akada T. Biotechnology and apple breeding in Japan. Breed Sci., 2016, 66(1): 18-33 CrossRef
  11. Podwyszyńska M., Markiewicz M., Broniarek-Niemiec A, Matysiak B., Marasek-Ciolakowska A. Apple autotetraploids with enhanced resistance to apple scab (Venturia inaequalis) due to genome duplication-phenotypic and genetic evaluation. Int. J. Mol. Sci., 2021, 22(2): 527 CrossRef
  12. Chen Z., Yu L., Liu W., Zhang J., Wang N., Chen X. Research progress of fruit color development in apple (Malus domestica Borkh.). Plant Physiol Biochem., 2021, 162: 267-279 CrossRef
  13. Univer T., Ikase L. Breeding apple scab resistant cultivars in Estonia. Acta Hortic., 2021, 1307: 7-12 CrossRef
  14. Blažek J., Zelený L., Danková V. Tree and fruit characteristics of four apple novelties in the Czech Republic. Acta Hortic., 2021, 1307: 43-48 CrossRef
  15. Kon T., Sato S., Kudo T., Fujita K., Fukasawa-Akawa T. Apple breeding at Aomori apple experiment station, Japan. Acta Hortic., 2000, 538: 215-218 CrossRef
  16. Fischer C. Apple breeding in the Federal Centre for Plant Breeding Research, Institute for Fruit Breeding at Dresden-Pillnitz, Germany. Acta Hortic., 2000, 538: 225-227 CrossRef
  17. Brown S.K., Maloney K.E., Hemmat M., Aldwinckle H.S. Apple breeding at Cornell: genetic studies of fruit quality, scab resistance and plant architecture. Acta Hortic., 2004, 663: 693-698 CrossRef
  18. Nybom H. Apple production and breeding in Sweden. Chronica Horticulturae, 2019, 59(2): 21-25.
  19. Skytte af Sätra J., Troggio M., Odilbekov F., Sehic J., Mattisson H., Hjalmarsson I., Ingvarsson P.K., Garkava-Gustavsson L. Genetic status of the Swedish Central collection of heirloom apple cultivars. Scientia Horticulturae, 2020, 272: 109599 CrossRef
  20. Fischer C. Apple breeding in the Federal Centre For Plant Breeding, Research Institute For Fruit Breeding at Dresden-Pillnitz, Germany. Acta Horticulturae, 2000, 538: 225-227 CrossRef
  21. Höfer M., Flachowsky H., Schröpfer S., Peil A. Evaluation of scab and mildew resistance in the Gene Bank Collection of apples in Dresden-Pillnitz. Plants (Basel), 2021, 10(6): 1227 CrossRef
  22. Luby J.J., Howard N.P., Tillman J.R., Bedford D.S. Extended pedigrees of apple cultivars from the University of Minnesota Breeding Program elucidated using SNP array markers. HortScience, 2022, 57(3): 472-477 CrossRef
  23. Sedov E.N., Makarkina M.A., Sedysheva G.A., Serova Z.M. 60 year bred conveyor of apple varieties, their resistance to scab and biochemical characteristics of fruits. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2015, 50(5): 637-640 (doi:10.15389/agrobiology.2015.5.637eng">CrossRef
  24. Programma i metodika selektsii plodovykh, yagodnykh i orekhoplodnykh kul’tur /Pod redaktsiey E.N. Sedova [Program and methodology for breeding fruit, berry and nut crops. E.N. Sedov (ed.)]. Orel, 1995 (in Russ.).
  25. Programma i metodika sortoizucheniya plodovykh, yagodnykh i orekhoplodnykh kul’tur /Pod redaktsiey E.N. Sedova, T.P. Ogol’tsovoy [Program and methodology for the study of variety of fruit, berry and nut crops. E.N. Sedov, Ogol’tsova T.P. (eds.)]. Orel, 1999 (in Russ.).
  26. Kompleksnaya programma po selektsii semechkovykh kul’tur na 2001-2020 gg. (Postanovlenie mezhdunarodnoy nauchno-metodicheskoy konferentsii «Osnovnye napravleniya i metody selektsii semechkovykh kul’tur») [Comprehensive program for the selection of pome crops for 2001-2020. (Resolution of the international scientific and methodological conference «Main directions and methods of selection of pome crops»)]. Orel, 2001 (in Russ.).
  27. Kichina V.V. Printsipy uluchsheniya sadovykh rasteniy [Principles for improving garden plants]. Moscow, 2011 (in Russ.).
  28. Sovershenstvovanie tekhnologii vyvedeniya novykh sortov plodovykh kul’tur, ikh ispytaniya i vnedreniya v proizvodstvo. Rekomendatsii [Improving the technology of breeding new varieties of fruit crops, their testing and introduction into production. Recommendations]. Moscow, 1989 (in Russ.).
  29. Laurens F., Aranzana M.J., Arus P., Bassi D., Bink M., Bonany J., Caprera A., Corelli-Grappadelli L., Costes E., Durel C.E., Mauroux J.B., Muranty H., Nazzicari N., Pascal T., Patocchi A., Peil A., Quilot-Turion B., Rossini L., Stella A., Troggio M., Velasco R., van de Weg E. An integrated approach for increasing breeding efficiency in apple and peach in Europe. Hortic Res., 2018, 5: 11 CrossRef
  30. Kumar S., Hilario E., Deng C.H., Molloy C. Turbocharging introgression breeding of perennial fruit crops: a case study on apple. Hortic Res., 2020, 7: 47 CrossRef
  31. Nilsson-Ehle H. Some new information about tetraploid apple varieties and their use and role in brieding of fruit trees. Sverig. Pomol. Foren Arsskr., 1944, 45: 229-237.
  32. Einset J. Apple breeding enters a new era. Fm. Res., NY, 1947, 13(2): 5.
  33. Dermen H. Tetraploid and diploid adventitious shoots from a giant sport of McIntosh apple. J. Hered., 1951, 42: 144-149.
  34. Sedysheva G.A., Sedov E.N. Poliploidiya i selektsiya yabloni [Polyploidy and apple tree breeding]. Orel, 1994 (in Russ.).
  35. Sedov E.N., Sedysheva G.A., Serova Z.M. Selektsiya yabloni na poliploidnom urovne [Apple breeding at the polyploid level]. Orel, 2008 (in Russ.).
  36. Zhuchenko A.A. Еkologicheskaya genetika kul’turnykh rasteniy (adaptivnyy rekombinogenez) [Ecological genetics of cultivated plants (adaptive recombinogenesis)]. Kishinev, 1980 (in Russ.).
  37. Zhuchenko A.A. Еkologicheskaya genetika kul’turnykh rasteniy i problemy agrosfery (teoriya i praktika). Tom 1 [Ecological genetics of cultivated plants and problems of the agrosphere (theory and practice). Volume 1]. Moscow, 2004 (in Russ.).
  38. Sedysheva G.A., Gorbacheva N.G. Dostizheniya nauki i tekhniki APK, 2010, 4: 30-32 (in Russ.).
  39. Prudnikov P.S., Sedov E.N., Prudnikova E.G. Vestnik Orlovskogo GAU, 2017, 3(66): 10-15 (in Russ.).
  40. Lespinasse Y., Alston F.H., Watkins R. Cytological techniques for use in apple breeding. Annals of Applied Biology, 1976, 82(2): 349-353 CrossRef
  41. Podwyszyńska M., Marasek-Ciołakowska A. Ploidy, genome size, and cytogenetics of apple. In: The apple genome. Compendium of Plant Genomes. S.S. Korban (ed.). Springer, Cham, 2021: 47-71 CrossRef
  42. Wójcik D., Marat M., Marasek-Ciołakowska A., Klamkowski K., Buler Z., Podwyszyńska M., Tomczyk P.P., Wójcik K., Treder W., Filipczak J. Apple autotetraploids — phenotypic characterisation and response to drought stress. Agronomy, 2022, 12(1): 161 CrossRef
  43. Hias N., Leus L., Davey M.W., Vanderzande S., Van Huylenbroeck J., Keulemans J. Effect of polyploidization on morphology in two apple (Malus ½ domestica) genotypes. Hort. Sci. (Prague), 2017, 44(2): 55-63 CrossRef
  44. Luo F., Evans K., Norelli J.L., Zhang Z., Peace S. Prospects for achieving durable disease resistance with elite fruit quality in apple breeding. Tree Genetics & Genomes, 2020, 16: 21 CrossRef
  45. Patocchi A., Wehrli A., Dubuis P.H., Auwerkerken A., Leida C., Cipriani G., Passey T., Staples M., Didelot F., Philion V., Peil A., Laszakovits H., Rühmer T., Boeck K., Baniulis D., Strasser K., Vávra R., Guerra W., Masny S., Ruess F., Le Berre F., Nybom H., Tartarini S., Spornberger A., Pikunova A., Bus V.G.M. Ten years of VINQUEST: first insight for breeding new apple cultivars with durable apple scab resistance. Plant Dis., 2020, 104(8): 2074-2081 CrossRef
  46. Zhdanov V.V. Metodika otbora ustoychivykh k parshe sortov i seyantsev yabloni na iskusstvennykh infektsionnykh fonakh [Methodology for the selection of scab-resistant varieties and seedlings of apple trees on artificial infectious backgrounds]. Moscow, 1985 (in Russ.).
  47. Kichina V.V. Plodovodstvo i yagodovodstvo Rossii, 2005, XII: 65-81 (in Russ.).
  48. Sedov E.N. Ispol’zovanie genofonda yabloni: istochniki i donory khozyaystvenno-poleznykh priznakov. Vavilovskiy zhurnal genetiki i selektsii, 2015, 19(1): 104-110 (in Russ.).
  49. Evans K. Apple breeding in the Pacific Northwest. Acta Horticulturae, 2013, 976: 75-78 CrossRef
  50. Shan F. The apple breeding program at the Department of Agriculture and Food Western Australia. Acta Horticulturae, 2013, 976: 57-61 CrossRef
  51. Fischer M., Fischer C. 75 years of tradition in classical Pillnitz fruit breeding — aims, results. Acta Horticulturae, 2004, 663: 699-706 CrossRef
  52. Savel’eva N.N. Breeding of scab immune apple cultivars, a problem of durable resistance and the possible ways of its solution (review). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2010, 1: 13-21 (in Russ.).
  53. Sushkov A.M., Sushkov A.A. Plodovodstvo i yagodovodstvo Rossii, 2012, ХХХII(2): 234-239 (in Russ.).
  54. Kondratenko T.E., Goneruk Yu.D. Materialy Mezhdunarodnoy konferentsii «Adaptivnyy potentsial i kachestvo produktsii sortov i sorto-podvoynykh kombinatsiy plodovykh kul’tur» [Proc. Int. Conf. «Adaptive potential and product quality of varieties and variety-rootstock combinations of fruit crops»]. Orel, 2012: 127-133 (in Russ.).
  55. Sukhotskiy M.I. Pitomnik i chastnyy sad, 2013, 3(21): 8 (in Russ.).
  56. Sedov E.N., Zhdanov V.V., Serova Z.M., Makarkina M.A. Apple breeding for scab resistance as a development of N.I. Vavilov’s and I.V. Michurin’s ideas.Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2013, 1: 42-52 CrossRef (in Russ.).
  57. Patrascu B.-I., Pamfil D., Sestras R., Gaboreanu I., Kovács K., Anda-Raluca R., Bondrea I. Molecular analysis of scab resistance in apple cultivars and hybrids from Transylvania. Bulletin UASVM Animal Science and Biotechnologies, 2006, 62: 248-251.
  58. Sedov E.N., Korneeva S.A., Serova Z.M. Kolonnovidnaya yablonya v intensivnom sadu [Columnar apple tree in intensive garden]. Orel, 2013 (in Russ.).
  59. Vávra R., Vejl P., Blažek, J. Growth characteristics of columnar apple tree genotypes. Acta Hortic., 2021, 1307: 83-90 CrossRef
  60. Zhou Z., Zhang L., Shu J., Wang M, Li H, Shu H, Wang X, Sun Q, Zhang S. Root breeding in the post-genomics era: from concept to practice in apple. Plants (Basel), 2022, 11(11): 1408 CrossRef
  61. Roberto S.R., Novello V., Fazio G. Editorial: new rootstocks for fruit crops: breeding programs, current use, future potential, challenges and alternative strategies. Front Plant Sci., 2022, 13: 878863 CrossRef
  62. Grusheva T.P., Samus’ V.A. V sbornike: Plodovodstvo [In: Fruit plants growing]. Minsk, 2014: 35-47 (in Russ.).
  63. Baldi P., Wolters P.J., Komjanc M., Viola R., Velasco R., Salvi S. Genetic and physical characterisation of the locus controlling columnar habit in apple (Malus ½ domestica Borkh.). Mol. Breeding, 2013, 31: 429-440 CrossRef
  64. Kichina V.V. Kolonnovidnye yabloni: vse o yablonyakh kolonnovidnogo tipa [Columnar apple trees: all about columnar apple trees]. Moscow, 2002 (in Russ.).
  65. Kachalkin M.V. Yablonya 21 veka. Kolonny, kotorye plodonosyat [Apple tree of the 21st century. Columns that bear fruit]. Moscow, 2013 (in Russ.).
  66. Shidakova A.S., Pshenokov A.Kh. Plodovodstvo i yagodovodstvo Rossii, 2017, KhLIKh: 371-374 (in Russ.).
  67. Sedov E.N., Makarkina M.A., Serova Z.M., Yanchuk T.V. Vestnik rossiyskoy sel’skokhozyaystvennoy nauki, 2019, 3: 42-47 CrossRef (in Russ.).
  68. Zaremuk R.Sh., Dolya Yu.A., Kopnina T.A. Productivity potential of drup fruit varieties — biomorphological features of formation andrealization under the climatic conditions of south Russia. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2020, 55(3): 573-587 CrossRef







Full article PDF (Rus)

Full article PDF (Eng)