doi: 10.15389/agrobiology.2022.5.832eng

UDC: 636.012:575.174.015.3

The authors express their sincere gratitude to L.M. Fedorova, Ph.D, for the interest shown in the work, fruitful discussion and useful advice in preparing the article for publication.



V.I. Glazko1, 2, G.Yu. Kosovsky2, T.T. Glazko1, 2

1Timiryazev Russian State Agrarian University—Moscow Agrarian Academy, 49, ul. Timiryazevskaya, Moscow, 127550 Russia, e-mail, (✉ corresponding author);
2Afanas’ev Research Institute of Fur-Bearing Animal Breeding and Rabbit Breeding, 6, ul. Trudovaya, pos. Rodniki, Ramenskii Region, Moscow Province, 140143 Russia, e-mail

Glazko V.I.
Glazko T.T.
Kosovskii G.Yu.

Received June 22, 2022

Plant and animal domestication is the key event in the history of mankind, its mechanisms have attracted the attention of many researchers, especially in recent decades due to the well-known decline in biodiversity, including in agricultural species. According to the definition proposed by Melinda Zeder (M.A. Zeder, 2015), domestication is the stable mutualistic relationship in a number of generations in which the domesticator influences the reproduction of the domesticates, optimizing their lifestyle for the supply of the needing resource to human, and thanks to which the domesticates gain advantages over other individuals of the species. Such relationships are accompanied by interspecific coevolution, they are present not only in humans and domestic species of plants and animals, but also in representatives of wild species, for example, insects, fungi. As a universal feature of domestic species in comparison with closely related wild ones, a high phenotypic diversity is considered, which was noticed by Charles Darwin (Ch. Darwin, 1951). Pairwise genomic comparisons of such species as domestic dog and wolf, wild and domestic cat, domesticated and wild rabbit reveal a relatively increased density of a number of mobile genetic elements in domesticated animals compared to wild ones. In recent years, mobile genetic elements, or transposons (TEs), have been considered as the main factors of genomic transformations, gene, genomic duplications, genomic and gene reconstructions, as well as horizontal exchanges of genetic information (K.R. Oliver, W.K. Greene, 2009). The number of comparative genomic studies of TEs in domesticated species is small, and the role of such elements in domestication, as a rule, is not discussed. However, it can be expected that universal mechanisms of genome variability underlie all evolutionary events, including in response to the new niche-construction during domestication. The presented review systematizes such mechanisms. TEs providing deep genomic transformations, active and passive forms of their interactions with the host genome are considered (K.R. Oliver et al., 2009). Examples of the emergence of new genes based on TEs, such as the synticin gene, are described (C. Herrera-Úbeda et al., 2021), the synaptic plasticity regulator gene arc (Activity Regulated Cytoskeleton Associated Protein) (C. Herrera-Úbeda et al., 2021), the bex gene family encoding, in particular, the neuron growth factor receptor (E. Navas-Pérez et al., 2020; R.P. Cabeen et al., 2022). Conflict and cooperative interactions with the host genome during retrotransposon movements and different mechanisms of their effects on gene expression profiles are discussed. The participation of TEs in the formation and variability of networks of genomic regulatory elements, in particular microRNAs, is considered. Examples of the involvement of microRNAs in the control and formation of economically valuable traits in domesticated plants and animals are presented. The accumulated data suggest that the leading source of large phenotypic variability of domesticated species is the relatively high saturation of their genomes with mobile genetic elements and, as a consequence, an increase in the variability of genomic regulatory networks in the formation of a new niche during domestication by humans.

Keywords: domestication, genomics, variability, transposons, regulatory networks, microRNAs.



  1. Andersson L., Purugganan M. Molecular genetic variation of animals and plants under domestication. Proc. Natl. Acad. Sci. USA, 2022, 119(30): e2122150119 CrossRef
  2. Darvin Ch. Izmeneniya domashnikh zhivotnykh i kul’turnykh rasteniy. Sochineniya. Tom 4 [Changes in domestic animals and cultivated plants. Works. V. 4]. Moscow-Leningrad, 1951 (in Russ.).
  3. Diamond J. Evolution, consequences and future of plant and animal domestication. Nature, 2002, 418(6898): 700-707 CrossRef
  4. Zeder M.A. Core questions in domestication research. Proc. Natl. Acad. Sci. USA, 2015, 112(11): 3191-3198 CrossRef
  5. Denham T., Barton H., Castillo C., Crowther A., Dotte-Sarout E., Florin S.A., Pritchard J., Barron A., Zhang Y., Fuller D.Q. The domestication syndrome in vegetatively propagated field crops. Ann. Bot., 2020, 125(4): 581-597 CrossRef
  6. Burban E., Tenaillon M.I., Le Rouzic A. Gene network simulations provide testable predictions for the molecular domestication syndrome. Genetics, 2022, 220(2): iyab214 CrossRef
  7. Rubio A.O., Summers K. Neural crest cell genes and the domestication syndrome: a comparative analysis of selection. PLoS ONE, 2022, 17(2): e0263830 CrossRef
  8. Glazko V.I., Kosovsky G.Yu., Glazko T.T. Human and domesticated species (review). Biogeosystem Technique, 2021, 8(1): 34-45 CrossRef
  9. Glazko V., Zybailov B., Glazko T. Asking the right question about the genetic basis of domestication: what is the source of genetic diversity of domesticated species?Adv. Genet. Eng., 2015, 4: 2 CrossRef
  10. Shapiro J.A. Nothing in evolution makes sense except in the light of genomics: read-write genome evolution as an active biological process. Biology (Basel), 2016, 5(2): 27 CrossRef
  11. Shapiro J.A. Living organisms author their read-write genomes in evolution. Biology (Basel), 2017, 6(4): 42 CrossRef
  12. Shapiro J.A. What we have learned about evolutionary genome change in the past 7 decades. Biosystems, 2022, 215-216: 104669 CrossRef
  13. Trono D. Transposable elements, polydactyl proteins, and the genesis of human-specific transcription networks. Cold Spring Harb. Symp. Quant. Biol., 2015, 80: 281-288 CrossRef
  14. Ricci M., Peona V., Guichard E., Taccioli C., Boattini A. Transposable elements activity is positively related to rate of speciation in mammals. J. Mol. Evol., 2018, 86(5): 303-310 CrossRef
  15. Rebollo R., Horard B., Hubert B., Vieira C. Jumping genes and epigenetics: towards new species. Gene, 2010, 454(1-2): 1-7 CrossRef
  16. Oliver K.R., Greene W.K. Mobile DNA and the TE-Thrust hypothesis: supporting evidence from the primates. Mobile DNA, 2011, 2: 8 CrossRef
  17. Oliver K.R., Greene W.K. Transposable elements: powerful facilitators of evolution. BioEssays, 2009, 31(7): 703-714 CrossRef
  18. Almojil D., Bourgeois Y., Falis M., Hariyani I., Wilcox J., Boissinot S. The structural, functional and evolutionary impact of transposable elements in eukaryotes. Genes (Basel), 2021, 12(6): 918 CrossRef
  19. Herrera-Úbeda C., Garcia-Fernàndez J. New genes born-in or invading vertebrate genomes. Front. Cell Dev. Biol., 2021, 9: 713918 CrossRef
  20. Navas-Pérez E., Vicente-García C., Mirra S., Burguera D., Fernàndez-Castillo N., Ferrán J.L., López-Mayorga M., Alaiz-Noya M., Suárez-Pereira I., Antón-Galindo E., Ulloa F., Herrera-Úbeda C., Cuscó P., Falcón-Moya R., Rodríguez-Moreno A., D’Aniello S., Cormand B., Marfany G., Soriano E., Carrión Á.M., Carvajal J.J., Garcia-Fernàndez J. Characterization of an eutherian gene cluster generated after transposon domestication identifies Bex3 as relevant for advanced neurological functions. Genome Biol., 2020, 21(1): 267 CrossRef
  21. Winter E.E., Ponting C.P. Mammalian BEX, WEX and GASP genes: coding and non-coding chimaerism sustained by gene conversion events. BMC Evol. Biol., 2005, 5: 54 CrossRef
  22. Cabeen R.P., Toga A.W., Allman J.M. Mapping frontoinsular cortex from diffusion microstructure. Cerebral Cortex, 2022: bhac237 CrossRef
  23. Bhattacharyya M.K., Smith A.M., Ellis T.H., Hedley C., Martin C. The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme. Cell, 1990, 60(1): 115-122 CrossRef
  24. Hazzouri K.M., Flowers J.M., Visser H.J., Khierallah H.S.M., Rosas U., Pham G.M., Meyer R.S., Johansen C.K., Fresquez Z.A., Masmoudi K., Haider N., El Kadri N., Idaghdour Y., Malek J.A., Thirkhill D., Markhand G.S., Krueger R.R., Zaid A., Purugganan M.D. Whole genome re-sequencing of date palms yields insights into diversification of a fruit tree crop. Nat. Commun., 2015, 6: 8824 CrossRef
  25. Feschotte C., Jiang N., Wessler S.R. Plant transposable elements: where genetics meets genomics. Nat. Rev. Genet., 2002, 3(5): 329-341 CrossRef
  26. Matsumine H., Herbst M.A., Ou S.H., Wilson J.D., McPhaul M.J. Aromatase mRNA in the extragonadal tissues of chickens with the henny-feathering trait is derived from a distinctive promoter structure that contains a segment of a retroviral long terminal repeat. Functional organization of the Sebright, Leghorn, and Campine aromatase genes. J. Biol. Chem., 1991, 266(30): 19900-19907.
  27. Li J., Davis B.W., Jern P., Dorshorst B.J., Siegel P.B., Andersson L. Characterization of the endogenous retrovirus insertion in CYP19A1 associated with henny feathering in chicken. Mobile DNA, 2019, 10: 38 CrossRef
  28. Halabian R., Makałowski W. A map of 3´ DNA transduction variants mediated by non-LTR retroelements on 3202 human genomes. Biology, 2022, 11: 1032 CrossRef
  29. Crow M., Suresh H., Lee J., Gillis J. Coexpression reveals conserved gene programs that co-vary with cell type across kingdoms. Nucleic Acids Research, 2022, 50(8): 4302-4314 CrossRef
  30. Nicolau M., Picault N., Moissiard G. The evolutionary volte-face of transposable elements: from harmful jumping genes to major drivers of genetic innovation. Cells, 2021, 10(11): 2952 CrossRef
  31. Colonna Romano N., Fanti L. Transposable elements: major players in shaping genomic and evolutionary patterns. Cells, 2022, 11(6): 1048 CrossRef
  32. Lu J.Y., Chang L., Li T., Wang T., Yin Y., Zhan G., Han X., Zhang K., Tao Y., Percharde M., Wang L., Peng Q., Yan P., Zhang H., Bi X., Shao W., Hong Y., Wu Z., Ma R., Wang P., Li W., Zhang J., Chang Z., Hou Y., Zhu B., Ramalho-Santos M., Li P., Xie W., Na J., Sun Y., Shen X. Homotypic clustering of L1 and B1/Alu repeats compartmentalizes the 3D genome. Cell Research, 2021, 31(6): 613-630 CrossRef
  33. Ivancevic A.M., Kortschak R.D., Bertozzi T., Adelson D.L. LINEs between species: evolutionary dynamics of LINE-1 retrotransposons across the eukaryotic tree of life. Genome Biol Evol., 2016, 8(11): 3301-3322 CrossRef
  34. Percharde M., Sultana T., Ramalho-Santos M. What doesn't kill you makes you stronger: transposons as dual players in chromatin regulation and genomic variation. BioEssays, 2020, 42(4): e1900232 CrossRef
  35. Falk M., Feodorova Y., Naumova N., Imakaev M., Lajoie B.R., Leonhardt H. Joffe B., Dekker J., Fudenberg G., Solovei I., Mirny L.A. Heterochromatin drives compartmentalization of inverted and conventional nuclei. Nature, 2019, 570(7761): 395-399 CrossRef
  36. Soares S.C., Eler E.S., E Silva C.E.F., da Silva M.N.F., Araújo N.P., Svartman M., Feldberg E. LINE-1 and SINE-B1 mapping and genome diversification in Proechimys species (Rodentia: Echimyidae). Life Science Alliance, 2022, 5(6): e202101104 CrossRef
  37. Stegniy V.N. Populyatsionnaya genetika i еvolyutsiya malyariynykh komarov [Population genetics and evolution of malarial mosquitoes]. Tomsk, 1991 (in Russ.).
  38. Artemov G.N., Stegniy V.N. Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya, 2010, 2(10): 123-131 (in Russ.).
  39. Roller M., Stamper E., Villar D., Izuogu O., Martin F., Redmond A.M., Ramachanderan R., Harewood L., Odom D.T., Flicek P. LINE retrotransposons characterize mammalian tissue-specific and evolutionarily dynamic regulatory regions. Genome Biology, 2021, 22(1): 62 CrossRef
  40. Percharde M., Sultana T., Ramalho-Santos M. What doesn’t kill you makes you stronger: transposons as dual players in chromatin regulation and genomic variation. BioEssays, 2020, 42(4): e1900232 CrossRef
  41. Chiu E.S., VandeWoude S. Endogenous retroviruses drive resistance and promotion of exogenous retroviral homologs. Annu. Rev. Anim. Biosci., 2021, 9: 225-248 CrossRef
  42. Chong A.Y., Kojima K.K., Jurka J., Ray D.A., Smit A.F., Isberg S.R., Gongora J. Evolution and gene capture in ancient endogenous retroviruses — insights from the crocodilian genomes. Retrovirology, 2014, 11: 71 CrossRef
  43. Benachenhou F., Sperber G.O., Bongcam-Rudloff E., Andersson G., Boeke J.D., Blomberg J. Conserved structure and inferred evolutionary history of long terminal repeats (LTRs). Mobile DNA, 2013, 4(1): 5 CrossRef
  44. Chiu E.S., Gagne R.B. A natural laboratory to elucidate the evolution of endogenous-exogenous retroviral interactions. Mol. Ecol., 2021, 30(11): 2473-2476 CrossRef
  45. Chiu E.S., VandeWoude S. Endogenous retroviruses drive resistance and promotion of exogenous retroviral homologs. Annu. Rev. Anim. Biosci., 2021, 9: 225-248 CrossRef
  46. Lanciano S., Mirouze M. Transposable elements: all mobile, all different, some stress responsive, some adaptive? Opinion in Genetics and Development, 2018, 49: 106-114 CrossRef
  47. Hosaka A., Kakutani T. Transposable elements, genome evolution and transgenerational epigenetic variation. Curr. Opin. Genet. Dev., 2018, 49: 43-48 CrossRef
  48. Cho J. Transposon-derived non-coding RNAs and their function in plants. Front. Plant Sci., 2018, 9: 600 CrossRef
  49. Shapiro J.A. Living organisms author their read-write genomes in evolution. Biology, 2017, 6(4): 42 CrossRef
  50. Hosaka A., Kakutani T. Transposable elements, genome evolution and transgenerational epigenetic variation. Curr. Opin. Genet. Dev., 2018, 49: 43-48 CrossRef
  51. Bhogireddy S., Mangrauthia S.K., Kumar R., Pandey A.K., Singh S., Jain A., Budak H., Varshney R.K., Kudapa H. Regulatory non-coding RNAs: a new frontier in regulation of plant biology. Funct. Integr. Genomics, 2021, 21(3-4): 313-330 CrossRef
  52. Jungers C.F., Djuranovic S. Modulation of miRISC-mediated gene silencing in eukaryotes. Front. Mol. Biosci., 2022, 9: 832916 CrossRef
  53. Sadeq S., Al-Hashimi S., Cusack C.M., Werner A. Endogenous double-stranded RNA. Noncoding RNA, 2021, 7(1): 15 CrossRef
  54. Hu G., Do D.N., Davoudi P., Miar Y. Emerging roles of non-coding RNAs in the feed efficiency of livestock species. Genes (Basel), 2022, 13(2): 297 CrossRef
  55. Penso-Dolfin L., Moxon S., Haerty W., Di Palma F. The evolutionary dynamics of microRNAs in domestic mammals. Sci. Rep., 2018, 8(1): 17050 CrossRef
  56. Braud M., Magee D.A., Park S.D., Sonstegard T.S., Waters S.M., MacHugh D.E., Spillane C. Genome-wide microRNA binding site variation between extinct wild aurochs and modern cattle identifies candidate microRNA-regulated domestication genes. Front. Genet., 2017, 8: 3 CrossRef
  57. Makino T., Rubin C.J., Carneiro M., Axelsson E., Andersson L., Webster M.T. Elevated proportions of deleterious genetic variation in domestic animals and plants. Genome Biol. Evol., 2018, 10(1): 276-290 CrossRef
  58. Startek M., Szafranski P., Gambin T., Campbell I.M., Hixson P., Shaw C.A., Stankiewicz P., Gambin A.. Genome-wide analyses of LINE-LINE-mediated nonallelic homologous recombination. Nucleic Acids Research, 2015, 43(4): 2188-2198 CrossRef
  59. Wang G.D., Shao X.J., Bai B., Wang J., Wang X., Cao X., Liu Y.H., Wang X., Yin T.T., Zhang S.J., Lu Y., Wang Z., Wang L., Zhao W., Zhang B., Ruan J., Zhang Y.P. Structural variation during dog domestication: insights from grey wolf and dhole genomes. National Science Review, 2019, 6(1): 110-122 CrossRef
  60. Yang N., Zhao B., Chen Y., D’Alessandro E., Chen C., Ji T., Wu X., Song C. Distinct retrotransposon evolution profile in the genome of rabbit (Oryctolagus cuniculus). Genome Biol. Evol., 2021, 13(8): evab168 CrossRef
  61. Ngo M.H., Arnal M., Sumi R., Kawasaki J., Miyake A., Grant C.K., Otoi T., Fernández de Luco D., Nishigaki K. Tracking the fate of endogenous retrovirus segregation in wild and domestic cats. J. Virol., 2019, 93(24): e01324-19 CrossRef
  62. Glazko V.I. Gene and genomic levels of domestication signature (review). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2018, 53(4): 659-672 CrossRef
  63. Glazko V., Zybailov B., Glazko T. Asking the right question about the genetic basis of domestication: what is the source of genetic diversity of domesticated species? Adv. Genet. Eng., 2015, 4: 2 CrossRef







Full article PDF (Rus)

Full article PDF (Eng)