PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2020.5.1004eng

UDC: 578.85/.86:573.6.086.83:577.21]:615.317

Acknowledgements:
Equipment used in the work was purchased with the funds of the Lomonosov Moscow University Development Program.
Supported financially by Russian Foundation for Basic Research (grants Nos. 18-34-00006mol_a and 20-016-00063А)

 

NOVEL APPROACH FOR DESIGNING ROTAVIRUS VACCINE CANDIDATE BASED ON TWO PLANT VIRUSES

E.M. Ryabchevskaya1 , E.A. Evtushenko1, M.V. Arkhipenko1,
T.I. Manukhova1, E.K. Donchenko1, N.A. Nikitin1, J.G. Atabekov1, 2,
O.V. Karpova1

1Lomonosov Moscow State University, Biological Faculty, str. 12, 1, Leninskie gory, Moscow, 119234 Russia, e-mail eryabchevskaya@gmail.com (corresponding author ✉),trifonova.katerina@gmail.com, armar74@mail.ru, tanyafedorova0411@gmail.com, donchenko@mail.bio.msu.ru, nikitin@mail.bio.msu.ru, atabekov@genebee.msu.su, okar@genebee.msu.ru;
2Institute of Bioengineering, Federal Research Center Fundamentals of Biotechnology RAS, 33/2, Leninskii prospect, Moscow, 119071 Russia

ORCID:
Ryabchevskaya E.M. orcid.org/0000-0003-2683-8285
Donchenko E.K. orcid.org/0000-0002-5872-3928
Evtushenko E.A. orcid.org/0000-0002-0679-6818
Nikitin N.A. orcid.org/0000-0001-9626-2336
Arkhipenko M.V. orcid.org/0000-0002-5575-602X
Atabekov J.G. orcid.org/0000-0003-3407-4051
Manukhova T.I. orcid.org/0000-0001-9498-1257
Karpova O.V. orcid.org/0000-0002-0605-9033

Received March 18, 2020

 

Rotavirus А (genus Rotavirus, family Reoviridae) is still the main cause of viral gastroenteritis in children under 5 years. Existing attenuated vaccines have serious disadvantages, including the risk of potential reversion to pathogenic form, and side effects, the most dangerous of which is intussusception. Moreover, they occurred to be less effective in developing countries, where the most rotavirus-associated deaths are recorded. The development of an effective recombinant rotavirus A vaccine is an actual assignment; herewith the selection of effective and safe adjuvant is the key point for that. Plant viruses are very promising for innovative vaccine designing; they possess high immunostimulating properties, safe for humans and mammals and can serve as a carrier for pathogens’ epitopes. Here we suggest an approach for rotavirus A vaccine development that involves two plant viruses: Alternanthera mosaic virus (AltMV) and Tobacco mosaic virus (TMV) as simultaneously epitope carriers and adjuvants. Spherical particles (SPs) generating by the heating of tobacco mosaic virus were used as an adjuvant and platform for presentation of obtained in our previous study chimeric recombinant protein ER6, which is an AltMV coat protein (CP) fused with the epitope RV14 (RLSFQLMRPPNMTP) of rotavirus A antigen VP6. Epitope RV14 are able to induce protective immune response and is conservative for the majority of rotavirus A strains therefore its usage gives hope to the successful overcoming of one of the main difficulties in rotavirus A vaccine development: wide serological diversity. In present work, effective adsorption of ER6 on the SPs surface leading to the SPs-ER6 complex formation without loss of ER6 antigenic specificity was demonstrated. Two immune antisera with specificity to RV14 epitope within ER6 were obtained. The first serum was obtained via anti-ER6 sera depletion with AltMV CP and recombinant AltMV CP (AltMV rCP), which was expressed in Escherichia coli but did not contain RV14 sequence. The second serum was obtained by a direct immunization with synthetic peptide RLSFQLMRPPNMTP. These sera were utilized for studying RV14 within SPs-ER6 complexes. By means of immunofluorescent microscopy, SPs-ER6 complexes were demonstrated to interact with both depleted serum and anti-RV14 serum. Therefore, rotavirus epitope was confirmed to keep its ability to interact with antibodies within obtained complexes. Considering unique adjuvant properties of spherical particles and characteristics of selected epitope obtained SPs-ER6 complexes can be thought as a promising component for recombinant rotavirus A vaccine. Moreover, it can be hoped that the suggested in present work approach, involving the usage of TMV SPs as a platform and adjuvant for chimeric AltMV CP, containing pathogen’s epitope, will be useful not only for rotavirus A vaccine development but for designing of vaccines against other pathogens of humans or farm animals.

Keywords: plant viruses, Tobacco mosaic virus, spherical particles, platform-carrier, platform-adjuvant Alternanthera mosaic virus, chimeric recombinant antigen, recombinant vaccines, rotavirus infection.

 

REFERENCES

  1. Sicard M., Bryant K., Muller M.L., Quach C. Rotavirus vaccination in the neonatal intensive care units: where are we? A rapid review of recent evidence. Curr. Opin. Pediatr.,2020, 32(1): 167-191 CrossRef
  2. Troeger C., Khalil I.A., Rao P.C., Cao S., Blacker B.F., Ahmed T., Armah G., Bines J.E., Brewer T.G., Colombara D. V., Kang G., Kirkpatrick B.D., Kirkwood C.D., Mwenda J.M., Parashar U.D., Petri W.A., Riddle M.S., Steele A.D., Thompson R.L., Walson J.L., Sanders J.W., Mokdad A.H., Murray C.J.L., Hay S.I., Reiner R.C. Rotavirus vaccination and the global burden of rotavirus diarrhea among children younger than 5 years. JAMA Pediatrics, 2018, 172(10): 958-965 CrossRef
  3. Kirkwood C.D., Ma L.F., Carey M.E., Steele A.D. The rotavirus vaccine development pipeline. Vaccine, 2019, 37(50): 7328-7335 CrossRef
  4. Weintraub E.S., Baggs J., Duffy J., Vellozzi C., Belongia E.A., Irving S., Klein N.P., Glanz J.M., Jacobsen S.J., Naleway A., Jackson L.A., DeStefano F. Risk of intussusception after monovalent rotavirus vaccination. N. Engl. J. Med., 2014,370(6): 513-519 CrossRef
  5. Carlin J.B., Macartney K.K., Lee K.J., Quinn H.E., Buttery J., Lopert R., Bines J., McIntyre P.B. Intussusception risk and disease prevention associated with rotavirus vaccines in Australia’s national immunization program. Clinical Infections Disease, 2013, 57(10): 1427-1434 CrossRef
  6. Burnett E., Parashar U., Tate J. Rotavirus vaccines: effectiveness, safety, and future directions. Pediatr. Drugs, 2018, 20(3): 223-233 CrossRef
  7. Desselberger U., Wolleswinkel-van den Bosch J., Mrukowicz J., Rodrigo C., Giaquinto C., Vesikari T. Rotavirus types in Europe and their significance for vaccination. Pediatr. Infect. Dis.,2006,25(1): S30-S41 CrossRef
  8. Sadiq A., Bostan N., Yinda K., Naseem S., Sattar S. Rotavirus: genetics, pathogenesis and vaccine advances. Rev. Med. Virol., 2018, 28(6): e2003 CrossRef
  9. Velasquez D., Parashar U., Jiang B. Decreased performance of live attenuated, oral rotavirus vaccines in low-income settings: causes and contributing factors. Expert Review of Vaccines, 2018, 17(2): 145-161 CrossRef
  10. Agarwal S., Hickey J.M., McAdams D., White J.A., Sitrin R., Khandke L., Cryz S., Joshi S.B., Volkin D.B. Effect of aluminum adjuvant and preservatives on structural integrity and physicochemical stability profiles of three recombinant subunit rotavirus vaccine antigens. Journal of Pharmaceutical Sciences, 2020,109(1): 476-487 CrossRef
  11. Afchangi A., Jalilvand S., Mohajel N., Marashi S., Shoja Z. Rotavirus VP6 as a potential vaccine candidate. Rev. Med. Virol., 2019, 29(2): e2027 CrossRef
  12. Estes M.K., Greenberg H.B. Rotaviruses. In: Fields virology. D.M. Knipe, P. Howley (eds.). Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia, 2013: 1347-1395.
  13. Estes M., Cohen J. Rotavirus gene structure and function. Microbiological Reviews, 1989, 53(4): 410-449.
  14. Svensson L., Sheshberadaran H., Vene S., Norrby E., Grandien M., Wadell G. Serum antibody responses to individual viral polypeptides in human rotavirus infections. Journal of General Virology, 1987, 68(3): 643-651 CrossRef
  15. Desselberger U., Huppertz H.I. Immune responses to rotavirus infection and vaccination and associated correlates of protection. Journal of Infectious Diseases, 2011, 203(2): 188-195 CrossRef
  16. Kovacs-Nolan J., Dongwan Y., Yoshinori M. Fine mapping of sequential neutralization epitopes on the subunit protein VP8 of human rotavirus. Biochemical Journal, 2003, 376(1): 269-275 CrossRef
  17. Crawford S., Mukherjee S., Estes M., Lawton J., Shaw A., Ramig R., Prasad B. Trypsin cleavage stabilizes the rotavirus VP4 spike. Journal of Virology, 2001, 75(13): 6052-6061 CrossRef
  18. Parbhoo N., Dewar J.B., Gildenhuys S. Sequence analysis and structural implications of rotavirus capsid proteins. Acta Virologica, 2016, 60(3): 260-270 CrossRef
  19. Ward R.L., McNeal M.M. VP6: a candidate rotavirus vaccine. The Journal of Infectious Diseases, 2010, 202(Suppl. 1): S101-S107 CrossRef
  20. Choi A.H.C., Basu M., McNeal M.M., Flint J., VanCott J.L., Clements J.D., Ward R.L. Functional mapping of protective domains and epitopes in the rotavirus VP6 protein. Journal of Virology, 2000, 74(24): 11574-11580 CrossRef
  21. Aiyegbo M.S., Sapparapu G., Spiller B.W., Eli I.M., Williams D.R., Kim R., Lee D.E., Liu T., Li S., Woods V.L., Nannemann D.P., Meiler J., Stewart P.L., Crowe J.E. Human rotavirus VP6-specific antibodies mediate intracellular neutralization by binding to a quaternary structure in the transcriptional pore. PLoS ONE, 2013, 8(5): e61101 CrossRef
  22. Choi A., McNeal M., Basu M., Bean J., VanCott J., Clements J., Ward R. Functional mapping of protective epitopes within the rotavirus VP6 protein in mice belonging to different haplotypes. Vaccine, 2003, 21(7-8): 761-767 CrossRef
  23. Balke I., Zeltins A. Use of plant viruses and virus-like particles for the creation of novel vaccines. Advanced Drug Delivery Reviews, 2019, 145: 119-129 CrossRef
  24. Zhao Y., Hammond R. Development of a candidate vaccine for Newcastle disease virus by epitope display in the Cucumber mosaic virus capsid protein. Biotechnology Letters, 2005, 27(6): 375-382 CrossRef
  25. Phelps J.P., Dao P., Jin H., Rasochova L. Expression and self-assembly of cowpea chlorotic mottle virus-like particles in Pseudomonas fluorescens. Journal of Biotechnology, 2007, 128(2): 290-296 CrossRef
  26. Mathieu C., Rioux G., Dumas M.C., Leclerc D. Induction of innate immunity in lungs with virus-like nanoparticles leads to protection against influenza and Streptococcus pneumoniae challenge. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9(7): 839-848 CrossRef
  27. Lebel M.-E., Daudelin J.-F., Chartrand K., Tarrab E., Kalinke U., Savard P., Labrecque N., Leclerc D., Lamarre A. Nanoparticle adjuvant sensing by TLR7 enhances CD8+ T cell-mediated protection from Listeria monocytogenes infection. The Journal of Immunology, 2014, 192(3): 1071-1078 CrossRef
  28. Acosta-Ramírez E., Pérez-Flores R., Majeau N., Pastelin-Palacios R., Gil-Cruz C., Ramírez-Saldaña M., Manjarrez-Orduño N., Cervantes-Barragán L., Santos-Argumedo L., Flores-Romo L., Becker I., Isibasi A., Leclerc D., López-Macías C. Translating innate response into long-lasting antibody response by the intrinsic antigen-adjuvant properties of papaya mosaic virus. Immunology, 2008, 124(2): 186-197 CrossRef
  29. Brennan F., Jones T., Hamilton W. Cowpea mosaic virus as a vaccine carrier of heterologous antigens. Molecular Biotechnology, 2001, 17(1): 15-26 CrossRef
  30. McCormick A.A., Palmer K.E. Genetically engineered tobacco mosaic virus as nanoparticle vaccines. Expert Review of Vaccines, 2008, 7(1): 33-41 CrossRef
  31. Denis J., Acosta-Ramirez E., Zhao Y., Hamelin M.E., Koukavica I., Baz M., Abed Y., Savard C., Pare C., Lopez Macias C., Boivin G., Leclerc D. Development of a universal influenza A vaccine based on the M2e peptide fused to the papaya mosaic virus (PapMV) vaccine platform. Vaccine, 2008, 26(27-28): 3395-3403 CrossRef
  32. Lico C., Mancini C., Italiani P., Betti C., Boraschi D., Benvenuto E., Baschieri S. Plant-produced potato virus X chimeric particles displaying an influenza virus-derived peptide activate specific CD8+ T cells in mice. Vaccine, 2009, 27(37): 5069-5076 CrossRef
  33. Kalnciema I., Skrastina D., Ose V., Pumpens P., Zeltins A. Potato virus Y-like particles as a new carrier for the presentation of foreign protein stretches. Molecular Biotechnology, 2012, 52(2): 129-139 CrossRef
  34. Evtushenko E., Ryabchevskaya E., Nikitin N., Atabekov J., Karpova O. Plant virus particles with various shapes as potential adjuvants. Scientific Reports,2020, 10(1): 1-10 CrossRef
  35. Donchenko E., Trifonova E., Nikitin N., Atabekov J., Karpova O. Alternanthera mosaic potexvirus: several features, properties, and application. Advances in Virology,2018, 2018: Article ID 197370 CrossRef
  36. Ryabchevskaya E.M., Evtushenko E.K., Arkhipenko M.V., Donchenko E.K., Nikitin N.A., Atabekov J.G., Karpova O.V. Recombinant rotavirus antigen based on Althernanthera mosaic virus coat protein. Molecular Biology (Mosk.),2020, 54(2): 278-284 CrossRef
  37. Choi A.H.C., Basu M., Mcneal M.M., Clements J.D., Ward R.L. Antibody-independent protection against rotavirus infection of mice stimulated by intranasal immunization with Chimeric VP4 or VP6 protein. Journal of Virology,1999, 73(9): 7574-7581 CrossRef
  38. Trifonova E.A., Nikitin N.A., Kirpichnikov M.P., Karpova O.V., Atabekov J.G. Obtaining and characterization of spherical particles — new biogenic platforms. Moscow University Biological Sciences Bulletin, 2015, 70(4): 194-197 CrossRef
  39. Kondakova O., Trifonova E., Arkhipenko M., Nikitin N., Karpova O., Atabekov J. Development of avian influenza vaccine on the basis of structurally modified plant virus. Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 2017, 52(4): 731-738 CrossRef
  40. Sambrook J., Fritsch E.F., Maniatis T. Molecular cloning: a laboratory manual. 2nd edition. Cold Spring Harbor, Cold Spring Harbor Lab. Press, New York, 1989.
  41. Settembre E.C., Chen J.Z., Dormitzer P.R., Grigorieff N., Harrison S.C. Atomic model of an infectious rotavirus particle. The EMBO Journal, 2011, 30(2): 408-416 CrossRef
  42. Sehnal D., Rose A.S., Koča J., Burley S.K., Velankar S. Mol*: Towards a common library and tools for web molecular graphics. Workshop on Molecular Graphics and Visual Analysis of Molecular Data. J. Byška, M. Krone, B. Sommer (eds.). The Eurographics Association, 2018: 29-33 CrossRef
  43. Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne Ph.E. The Protein Data Bank. Nucleic Acids Research, 2000, 28(1): 235-242 CrossRef
  44. Jmol: an open-source Java viewer for chemical structures in 3D. Available: http://www.jmol.org. No date.
  45. Mathieu M., Petitpas I., Navaza J., Lepault J., Kohli E., Pothier P., Prasad B.V.V., Cohen J., Rey F.A. Atomic structure of the major capsid protein of rotavirus: implications for the architecture of the virion. The EMBO Journal, 2001, 20(7): 1485-1497 CrossRef
  46. Hulo C., de Castro E., Masson P., Bougueleret L., Bairoch A., Xenarious I., Le Mercier P. ViralZone: a knowledge resource to understand virus diversity. Nucleic Acids Research, 2011, 39(Database issue): D576-D582 CrossRef
  47. Denis J., Majeau N., Acosta-Ramirez E., Savard C., Bedard M., Simard S., Lecours K., Bolduc M., Pare C., Willems B., Shoukry N., Tessier P., Lacasse P., Lamarre A., Lapointe R., Macias C., Leclerc D. Immunogenicity of papaya mosaic virus-like particles fused to a hepatitis C virus epitope: evidence for the critical function of multimerization. Virology, 2007, 363: 59-68 CrossRef
  48. Rioux G., Babin C., Majeau N., Leclerc D. Engineering of papaya mosaic virus (PapMV) nanoparticles through fusion of the HA11 peptide to several putative surface-exposed sites. PLoS ONE, 2012, 7(2): e31925 CrossRef
  49. O’Hagan D.T., De Gregorio E. The path to a successful vaccine adjuvant — “The long and winding road”. Drug Discovery Today, 2009, 14(11-12): 541-551 CrossRef
  50. Del Giudice G., Rappuoli R., Didierlaurent A.M. Correlates of adjuvanticity: a review on adjuvants in licensed vaccines. Seminars in Immunology, 2018, 39: 14-21 CrossRef

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)