PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2020.5.956eng

UDC: 635.153:577.152.31:577.151.64:582

 

POLYMORPHISM OF ESTERASE ISOENZYMES OF RIPE SEEDS OF SAMPLES OF RADISH (Raphanus sativus L.)

A.S. Rudakova1, S.V. Rudakov1, А.М. Artemyeva2, А.B. Kurina2, N.V. Kocherina3, Yu.V. Chesnokov3

1Moldova State University, Republic of Moldova, MD-2009, Chişinău, Mateevich str., 60, e-mail rud-as@mail.ru, rudacov@yahoo.com;
2Federal Research Center Vavilov All-Russian Institute of Plant Genetic Resources, 42-44, ul. Bol’shaya Morskaya, St. Petersburg, 190000 Russia, e-mail akme11@yandex.ru, nastya_n11@mail.ru;
3Agrophysical Research Institute, 14, Grazhdanskii prosp., St. Petersburg, 195220 Russia, e-mail alle007@mail.ru, yuv_chesnokov@agrophys.ru (corresponding author ✉)

ORCID:
Rudakova A.S. orcid.org/0000-0001-9638-2151
Kurina A.B. orcid.org/0000-0002-3197-4751
Rudakov S.V. orcid.org/0000-0003-2591-6114
Kocherina N.V. orcid.org/0000-0002-8791-1899
Artemyeva A.M. orcid.org/0000-0002-6551-5203
Chesnokov Yu.V. orcid.org/0000-0002-1134-0292

Received June 21, 2020

 

A biochemical approach was used to assess the genetic variability of the seed radish (Raphanus sativus L.) accessions which are distinguished by a wide variety of morphological characters. It is known that the esterase complex in plants has intraspecific specificity; in addition, these enzymes are characterized by tissue specificity. Earlier, the samples of the collections of the genetic resources of the radish were never evaluated for the presence of isozyme forms of esterases in mature seeds of this culture. The establishment of the general variability of isoenzyme systems and the identification of their genetic control make it possible to reveal the subtle mechanisms of the organism's relationship with the environment and homeostasis, which is especially important for long-term storage of samples in genetic seed collections. The development of effective biochemical markers for the rapid assessment of collection, as well as genetically and breeding significant material is also essential. This work allows us to fill the gap that exists in relation to the samples of genetic resources of the radish.  From the collection of the Federal Research Center Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 49 radish accessions were selected, belonging to three subspecies, divided according to geographic principle as Chinese, Japanese and European radish. All esterase isozymes of seeds were separated using native vertical electrophoresis in polyacrylamide gel followed by processing for nonspecific esterase. According to their esterase composition, all accessions were subdivided into 7 zymotypes, differing from each other by the presence or absence of certain zones. In total, in the esterase complex of radish seeds, 5 main isozymes with different molecular weights varying from 45.3 kDa to 35.0 kDa were found. All five zones were characterized by a high level of polymorphism among the samples. Based on the composition of isozymes, all genotypes formed 7 zymotypes. Zymotype No. 1, represented by the maximum number of esterases (5 zones), comprised of 43 % of the total number of genotypes. Zymotype No. 2 constituted 33 % of all samples. The rarest zymotypes No. 5 and No. 7 (4 %) differed in the minimum amount of esterase enzymes (2 zones each). Zymotypes No. 2 and No. 4 were characterized by 4 zones. Representatives of two groups, No. 3 and No. 6 had 3 zones in their esterase complex. The quantitative ratio of all esterase zones varied greatly in the studied samples. The minimum content (4.78 %) was found for the B5 zone, the maximum amount (67.44 %) was found for the B1 zone. The prevalence of each zone among all studied samples ranged from 13 to 23 %. Zones B3 (Mr = 39.7 kDa) and B4 (Mr = 37.1 kDa) were the most common among all esterase isozymes; these zones were observed in 23 % of genotypes. For 22 % of representatives, the B2 zone was characteristic (Mr = 42.9 kD). Zones B1 (Mr = 45.3 kD) and B5 (Mr = 35 kD) were less common, 19 % and 13 %, respectively. The average heterozygosity of isozygous forms of esterases of the studied radish samples was Htotal = 0.212, with variance for the same samples Var(Htotal) = 0.0007. Cluster analysis of esterase enzymes divided the studied set of radish samples into European and Asian subspecies and varieties, and together with phenotypic traits, it allowed constructing a dendrogram corresponding to the botanical, agrobiological and geographical location of the samples. It should be noted that the accessions of the European subspecies radish are located in two clusters, and the accessions of Russian origin form a separate group in the first cluster, and the samples of European origin are grouped in the third cluster which also includes Japanese radishes of European origin. Perhaps this division is associated with the peculiarities of the selection process in creating these samples. Based on the data obtained, esterase enzymes are recommended as biochemical markers in genetic selection experiments.

Keywords: Raphanus sativus L., morphological characters, phenological characters, seeds, esterases, isoforms, zymotypes, polymorphism, biochemical markers, clustering.

 

REFERENCES

  1. Sinskaya E.N. Redis i red'ka (Raphanus sativus L.). Trudy po prikladnoi botanike, genetike i selektsii, 1928, 19(3): 448-534 (in Russ.).
  2. Sinskaya E.N. Trudy po prikladnoi botanike, genetike i selektsii, 1931, 26(2): 3-58 (in Russ.).
  3. Sazonova L.V. Trudy po prikladnoi botanike, genetike i selektsii, 1971, 45(1): 42-75 (in Russ.).
  4. Shebalina M.A., Sazonova L. V. Kul'turnaya Flora SSSR. T. 18. Korneplodnye rasteniya (semeistvo Kapustnye — repa, turneps, bryukva, red'ka, redis) /Pod redaktsiei V.T. Krasochkina, V.I. Burenina [Cultural flora of the USSR. Vol. 18. Root plants (Brassicaceae family — turnips, turnips, rutabagas, radishes, radishes). T. Krasochkin, V.I. Burenin (eds.)]. Leningrad, 1985 (in Russ.).
  5. Tsuro M., Suwabe K., Kubo N., Matsumoto S., Hirai M. Mapping of QTLs controlling root shape and red pigmentation in radish, Raphanus sativus L. Breeding Science, 2008, 58(1): 55-61 CrossRef
  6. Mun J.H., Chung H., Chung W.H., Oh M., Jeong Y.M., Kim N., Ahn B.O., Park B.S., Park S., Lim K.B., Hwang Y.J., Yu H.J. Construction of a reference genetic map of Raphanus sativus based on genotyping by whole-genome resequencing. Theoretical and Applied Genetics,2015, 128(2): 259-272 CrossRef
  7. Xu L., Wang L., Gong Y., Dai W., Wang Y., Zhu X., Wen T., Liu L. Genetic linkage map construction and QTL mapping of cadmium accumulation in radish (Raphanus sativus L.). Theoretical and Applied Genetics,2012, 125(4): 659-670 CrossRef
  8. Hashida T., Nakatsuji R., Budahn H., Schrader O., Peterka H., Fujimura T., Kubo N., Hirai M. Construction of a chromosome-assigned, sequence-tagged linkage map for the radish, Raphanus sativus L. and QTL analysis of morphological traits. Breeding Science,2013, 63(2): 218-226 CrossRef
  9. Yu X., Choi S.R., Dhandapani V., Rameneni J.J., Li X., Pang W., Lee J.Y., Lim Y.P. Quantitative trait loci for morphological traits and their association with functional genes in Raphanus sativus. Frontiers in Plant Science,2016, 7: 255 CrossRef
  10. Kitashiba H., Li F, Hirakawa H., Kawanabe T, Zou Z., Hasegawa Y., Tonosaki K., Shirasawa S., Fukushima A., Yokoi S., Takahata Y., Kakizaki T., Ishida M., Okamoto S., Sakamoto K., Shirasawa K., Tabata S., Nishio T. Draft sequences of the radish (Raphanus sativus L.) genome. DNA Research, 2014, 21(5): 481-490 CrossRef
  11. Mitsui Y., Shimomura M., Komatsu K., Namiki N., Shibata-Hatta M., Imai M., Katayose Y., Mukai Y., Kanamori H., Kurita K., Kagami T., Wakatsuki A., Ohyanagi H., Ikawa H., Minaka N., Nakagawa K., Shiwa Y., Sasaki T. The radish genome and comprehensive gene expression profile of tuberous root formation and development. Scientific Reports,2015, 5: 10835 CrossRef
  12. Jeong Y.M., Kim N., Ahn B.O., Oh M., Chung W.H., Chung H., Jeong S., Lim K.B., Hwang Y.J., Kim G.B., Baek S., Choi S.B., Hyung D.J., Lee S.W., Sohn S.H., Kwon S.J., Jin M., Seol Y.J., Chae W.B., Choi K.J., Park B.S., Yu H.J., Mun J.H. Elucidating the triplicated ancestral genome structure of radish based on chromosome-level comparison with the Brassica genomes. Theoretical and Applied Genetics, 2016, 129(7): 1357-1372 CrossRef
  13. Ivy N.A., Biswas M.S., Rasul G., Hossain T., Mian M.A.K. Variations of genotypes of radish at molecular level using isozyme analysis for the identification of self-incompatible lines. Global Journal of Biotechnology & Biochemistry, 2010, 5(1): 19-26.
  14. Cruz S.M., Nery M.C., Pinho E.V, Luiz M. Molecular characterization of radish cultivars. Revista Ciência Agronômica, 2014, 45(4): 815-822 CrossRef
  15. Rudakova A.S., Rudakov S.V., Artem'eva A.M., Kurina A.B., Kocherina N.V., Chesnokov Yu.V. Ovoshchi Rossii, 2017, 5(38): 3-8 CrossRef
  16. Rudakova A.S., Rudakov S.V., Davydova N.V., Mirskaya G.V., Zhuravleva E.V., Chesnokov Yu.V. Isozymic analysis of esterases in mature seeds of hexaploid soft wheat (Triticum aestivum L.). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2016, 51(3): 327-334 CrossRef
  17. Rudakova A.S., Rudakov S.V., Artem'eva A.M., Fateev D.A., Kocherina N.V., Chesnokov Yu.V. QTL mapping of esterase isozyme forms in Brassica rapa L. mature seeds (review) Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2019, 54(3): 469-480 CrossRef
  18. Nakagahra M., Okuno K., Vaughan D. Rice genetic resources: history, conservation, investigative characterization and use in Japan. In: Oryza: from molecule to plant. T. Sasaki, G. Moore (eds.). Springer, Dordrecht, 1997: 69-77 CrossRef
  19. Alexandre F., Morvan, O., Gaffe J., Mareck A., Jauneau A., Dauchel H., Balange A.P., Morvan C. Pectin methylesterase pattern in flax seedlings during their development. Plant Physiology and Biochemistry, 1997, 35(6): 427-436.
  20. Timonen S., Sen R. Heterogeneity of fungal and plant enzyme expression in intact Scots pine—Suillus bovinus and —Paxillus involutus mycorrhizospheres developed in natural forest humus. New Phytologist, 1998, 138(2): 355-366 CrossRef
  21. Muarlidharan J., John E., Channamma L., Theerthaprasad D. Changes in esterases in response to blast infection in fingermillet seedlings. Phytochemistry, 1996, 43(6): 1151-1155 CrossRef
  22. Pappas A.C., Paplomatas E.J. Pyriculria leaf spot: a new disease of ornamental plants of the family Marantaceae. Plant Desease, 1998, 82(5): 465-469 CrossRef
  23. Parker D.M., Köller W. Cutinase and other lipolytic esterases protect bean leaves from infection by Rhizoctonia solani. Molecular Plant-Microbe Interactions, 1998, 11(6): 514-522 CrossRef
  24. Aung U.T., McDonald M.D. Changes in esterase activity associated with peanut (Arachis hypogea L.) seed deterioration. Seed Science and Technology, 1995, 23(1): 101-111.
  25. Miura G.A., Broomfield C.A., Lawson M.A., Worthley E.G. Widespread occurrence of cholinesterase activity in plants. Physiologia Plantarum, 1982, 56(1): 28-32 CrossRef
  26. Feng P.C.C., Ruff T.G., Rangwala S.H., Rao S.R. Engineering plant resistance to thiazopyr herbicide via expression of a novel esterase deactivation enzyme. Pesticide Biochemistry and Physiology, 1997, 59(2): 89-103 CrossRef
  27. Maier R. Blei und seine Auswirkung auf Aktivität und multiple Formen der Alpha-Naphtyl-Easterase in bleichteten und verdunkelten pflanzen. Berichte der Deutschen Botanischen Gesellschaft, 1978, 91(1): 339-350.
  28. Cachot J., Romaña L.A., Galgani F. In vivo esterase activity in protoplasts as a bioassay of environmental quality. Aquatic Botany, 1994, 48(3-4): 297-312 CrossRef
  29. Krasnuk M., Witham F.H., Jung G.A. Hydrolytic enzyme differences in cold-tolerant and cold-sensitive alfalfa. Agronomy Journal, 1978, 70(4): 597-605 CrossRef
  30. Taskakorie A., Clerc M., Thi A.T.P., da Silva J.V. Evidence of esterase activity in cotton leaves: effect of drought on this activity. Comptes rendus del'Academie des Sciences. Serie III. Sciences de la Vie,2013, 301(6): 343-346.
  31. Davis B.J. Disc electrophoresis. II. Method and application to human serum proteins. Annals of the New York Academy of Sciences, 1964, 121(2): 404-427 CrossRef
  32. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry,1976, 72(1-2): 248-254 CrossRef
  33. Meon S. Protein, esterase and peroxidase patterns of Phytophtora isolates from cocoa in Malaysia. Journal of Islamic Academy of Sciences,1988, 1(2): 154-158.
  34. Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 1978, 89(3): 583-590.
  35. Lefèvre F., Charrie A. Isozyme diversity within African Manihot germplasm. Euphytica, 1992, 66(1): 73-80 CrossRef
  36. Veir B. Analiz geneticheskikh dannykh [Analysis of genetic data]. Moscow, 1995 (in Russ.).
  37. Sazonova L.V., Vlasova E.A. Metodicheskie ukazaniya po izucheniyu i podderzhaniyu mirovoi kollektsii korneplodov [Methodological guidelines for the study and maintenance of the global collection of root crops]. Leningrad, 1989 (in Russ.).
  38. IBPGR. Descriptors for Brassica and Raphanus. International Board for Plant Genetic Resources, Rome, Italy, 1990.
  39. Shayakhmetov I.F., Akhmadieva A.A., Leonova S.A., Nikonov V.I. Vestnik Bashkirskogo universiteta, 2012, 17(1): 89-93 (in Russ.).
  40. Kurina A.B., Kornyukhin D.L., Artem'eva A.M. Vestnik Novosibirskogo gosudarstvennogo agrarnogo universiteta, 2018, 4(49):81-92 CrossRef (in Russ.).

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)